Volume 8 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Siyuan Sun, Weijie Bao, Fan Yang, Xingru Yan, Yang Sun, Ge Zhang, Wang Yang, Yongfeng Li. Electrochemical synthesis of FeNx doped carbon quantum dots for sensitive detection of Cu2+ ion. Green Energy&Environment, 2023, 8(1): 141-150. doi: 10.1016/j.gee.2021.04.005
Citation: Siyuan Sun, Weijie Bao, Fan Yang, Xingru Yan, Yang Sun, Ge Zhang, Wang Yang, Yongfeng Li. Electrochemical synthesis of FeNx doped carbon quantum dots for sensitive detection of Cu2+ ion. Green Energy&Environment, 2023, 8(1): 141-150. doi: 10.1016/j.gee.2021.04.005

Electrochemical synthesis of FeNx doped carbon quantum dots for sensitive detection of Cu2+ ion

doi: 10.1016/j.gee.2021.04.005
  • A novel strategy was developed to fabricate FeNx-doped carbon quantum dots (Fe-N-CQDs) to detect Cu2+ ions selectively as a fluorescence probe. The Fe-N-CQDs were synthesized by an efficient electrolysis of a carbon cloth electrode, which was coated with monoatomic iron-anchored nitrogen-doped carbon (Fe-N-C). The obtained Fe-N-CQDs emitted blue fluorescence and possessed a quantum yield (QY) of 7.5%. An extremely wide linear relationship between the Cu2+ concentration and the fluorescence intensity was obtained in the range from 100 nmol L-1 to 1000 nmol L-1 (R2 = 0.997), and the detection limit was calculated as 59 nmol L-1. Moreover, the Fe-N-CQDs demonstrated wide range pH compatibility between 2 and 13 due to the coordination between pyridine nitrogen and Fe3+, which dramatically reduced the affection of the protonation and deprotonation process between H+ and Fe-N-CQDs. It is notable that the Fe-N-CQDs exhibited a rapid response in Cu2+ detection, where stable quenching can be completed in 7 s. The mechanism of excellent selective detection of Cu2+ was revealed by energy level simulation that the LUMO level of Fe-N-CQDs (-4.37 eV) was close to the redox potential of Cu2+, thus facilitating the electron transport from Fe-N-CQDs to Cu2+.

     

  • • Fe-N-CQDs was synthesized by electrolysis method from monoatomic iron-anchored nitrogen doped carbon (Fe-N-C). • Fe-N-CQDs was capable of possessing good pH compatibility and exhibiting rapidly detection response in Cu2+ detection. • The unique structure of FeNx in Fe-N-C is reserved integrally, which endows special properties to Fe-N-CQDs.
    The first two authors contributed equally to this work.
  • loading
  • [1]
    WHO, Guidelines for Drinking-Water Quality (Recommendations) vol. 1, World Health Organization, Geneva, 2008
    [2]
    Y. Dong, H. Pang, H. B. Yang, C. Guo, J. Shao, Y. Chi, C. M. Li and T. Yu, Angew. Chemie-Int. Ed. 52 (2013) 7800-7804
    [3]
    A. Terrab, D. Hernanz and F. J. Heredia, J. Agric. Food Chem. 52 (2004) 3441-3445
    [4]
    W. Reichel and B. G. Bleakley, Anal. Chem. 46 (1974) 59-61
    [5]
    H. Chen, C. Fan, Q. Chang, G. Pang, X. Hu, M. Lu and W. Wang, J. Agric. Food Chem. 62 (2014) 2443-2448
    [6]
    W. Qin, Z. Zhang and H. Liu, Anal. Chem. 70 (1998) 3579-3584
    [7]
    M. A. Baldo, S. Daniele, I. Ciani, C. Bragato and J. Wang, Electroanalysis 16 (2004) 360-366
    [8]
    G. G. Huang and J. Yang, Anal. Chem. 75 (2003) 2262-2269
    [9]
    H. Y. Zhang, Y. Wang, S. Xiao, H. Wang, J. H. Wang and L. Feng, Biosens. Bioelectron. 87 (2017) 46-52
    [10]
    G. Y. Lan, C. C. Huang and H. T. Chang, Chem. Commun. 46 (2010) 1257-1259
    [11]
    L. Zhang, J. Zhu, J. Ai, Z. Zhou, X. Jia and E. Wang, Biosens. Bioelectron. 39 (2013) 268-273
    [12]
    F. Yuan, Z. Wang, X. Li, Y. Li, Z. Tan, L. Fan and S. Yang, Adv. Mater. 29 (2017) 1604436-1604442
    [13]
    P. G. Luo, S. Sahu, S. T. Yang, S. K. Sonkar, J. Wang, H. Wang, G. E. Lecroy, L. Cao and Y. P. Sun, J. Mater. Chem. B 1 (2013) 2116-2127
    [14]
    L. Lin, Y. Luo, P. Tsai, J. Wang and X. Chen, TrAC-Trends Anal. Chem. 103 (2018) 87-101
    [15]
    S. Liu, J. Tian, L. Wang, Y. Zhang, X. Qin, Y. Luo, A. M. Asiri, A. O. Al-Youbi and X. Sun, Adv. Mater. 24 (2012) 2037-2041
    [16]
    M. Zheng, Z. Xie, D. Qu, D. Li, P. Du, X. Jing and Z. Sun, ACS Appl. Mater. Interfaces 5 (2013) 13242-13247
    [17]
    D. Xiao, R. Pan, S. Li, J. He, M. Qi, S. Kong, Y. Gu, R. Lin and H. He, RSC Adv. 5 (2015) 2039-2046
    [18]
    S. Qu, H. Chen, X. Zheng, J. Cao and X. Liu, Nanoscale 5 (2013) 5514-5518
    [19]
    J. Gu, D. Hu, W. Wang, Q. Zhang, Z. Meng, X. Jia and K. Xi, Biosens. Bioelectron. 68 (2015) 27-33
    [20]
    H. Li, J. Zhai, J. Tian, Y. Luo and X. Sun, Biosens. Bioelectron. 26 (2011) 4656-4660
    [21]
    X. Gao, C. Du, Z. Zhuang, W. Chen, J. Mater. Chem. C 4 (2016) 6927-6945
    [22]
    M. C. Rong, K. X. Zhang, Y. R. Wang and X. Chen, Chinese Chem. Lett. 28 (2017) 1119-1124
    [23]
    P. Luo, Z. Ji, C. Li and G. Shi, Nanoscale 5 (2013) 7361-7367
    [24]
    H. Yuan, J. Yu, S. Feng and Y. Gong, RSC Adv. 6 (2016) 15192-15200
    [25]
    F. Yang, W. Bao, T. Liu, B. Zhang, S. Huang, W. Yang, Y. Li, N. Li, C. Wang, C. Pan and Y. Li, Microchim. Acta 187 (2020) 322-332
    [26]
    Q. Q. Zhang, B. Bin Chen, H. Y. Zou, Y. F. Li and C. Z. Huang, Biosens. Bioelectron. 100 (2018) 148-154
    [27]
    M. Karabacak, L. Sinha, O. Prasad, Z. Cinar and M. Cinar, Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 93 (2012) 33-46
    [28]
    R. Wu, J. Wang, K. Chen, S. Chen, J. Li, Q. Wang, Y. Nie, Y. Song, H. Chen and Z. Wei, Electrochim. Acta 244 (2017) 47-53
    [29]
    C. Wang, F. Yang, T. Qiu, Y. Cao, H. Zhong, C. Yu, R. Li, L. Mao and Y. Li, J. Electroanal. Chem. 810 (2018) 62-68
    [30]
    Y. Wang, Y. Zhang, M. Jia, H. Meng, H. Li, Y. Guan and L. Feng, Chem.-A Eur. J. 21 (2015) 14843-14850
    [31]
    S. A. R. Shahamirifard, M. Ghaedi, M. Montazerozohori and A. Masoudiasl, Photochem. Photobiol. Sci. 17 (2018) 245-255
    [32]
    Y. Guo, L. Yang, W. Li, X. Wang, Y. Shang and B. Li, Microchim. Acta 183 (2016) 1409-1416
    [33]
    P. Das, S. Ganguly, M. Bose, S. Mondal, A. K. Das, S. Banerjee and N. C. Das, Mater. Sci. Eng. C 75 (2017) 1456-1464
    [34]
    H. Sun, N. Gao, L. Wu, J. Ren, W. Wei and X. Qu, Chem.-A Eur. J. 19 (2013) 13362-13368
    [35]
    F. Yang, X. He, C. Wang, Y. Cao, Y. Li, L. Yan, M. Liu, M. Lv, Y. Yang, X. Zhao and Y. Li, Appl. Surf. Sci. 448 (2018) 589-598
    [36]
    L. Shi, Y. Li, X. Li, B. Zhao, X. Wen, G. Zhang, C. Dong and S. Shuang, Biosens. Bioelectron. 77 (2016) 598-602
    [37]
    Y. Wang, Q. Chang and S. Hu, Sensors Actuators, B Chem. 253 (2017) 928-933
    [38]
    Y. F. Sun, W. Huang, C. G. Lu and Y. P. Cui, Dye. Pigment. 81 (2009) 10-17
    [39]
    X. Hai, Q. X. Mao, W. J. Wang, X. F. Wang, X. W. Chen and J. H. Wang, J. Mater. Chem. B 3 (2015) 9109-9114
    [40]
    A. Kumari, A. Kumar, S. K. Sahu and S. Kumar, Sensors Actuators, B Chem. 254 (2018) 197-205
    [41]
    J. Wang, R. Sheng Li, H. Zhi Zhang, N. Wang, Z. Zhang and C. Z. Huang, Biosens. Bioelectron. 97 (2017) 157-163
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (223) PDF downloads(21) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return