Volume 8 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Fantao Meng, Yuang Zhang, Shufen Zhang, Benzhi Ju, Bingtao Tang. Polysulfide nanoparticles-reduced graphene oxide composite aerogel for efficient solar-driven water purification. Green Energy&Environment, 2023, 8(1): 267-274. doi: 10.1016/j.gee.2021.04.004
Citation: Fantao Meng, Yuang Zhang, Shufen Zhang, Benzhi Ju, Bingtao Tang. Polysulfide nanoparticles-reduced graphene oxide composite aerogel for efficient solar-driven water purification. Green Energy&Environment, 2023, 8(1): 267-274. doi: 10.1016/j.gee.2021.04.004

Polysulfide nanoparticles-reduced graphene oxide composite aerogel for efficient solar-driven water purification

doi: 10.1016/j.gee.2021.04.004
  • Along with the environmental pollution, the scarcity of clean water seriously threatens the sustainable development of human society. Recently, the rapid development of solar evaporators has injected new vitality into the field of water purification. However, the industry faces a considerable challenge of achieving comprehensive purification of ions, especially the efficient removal of mercury ions. In this work, we introduce an ideal mercury-removal platform based on facilely and cost-effectively synthesized polysulfide nanoparticles (PSNs). Further development of PSN-functionalized reduced graphene oxide (PSN-rGO) aerogel evaporator results in achieving a high evaporation rate of 1.55 kg m-2 h-1 with energy efficiency of 90.8% under 1 sun. With the merits of interconnected porous structure and adsorption ability, the photothermal aerogel presents overall purification of heavy metal ions from wastewater. During solar desalination, salt ions can be rejected with long-term stability. Compared with traditional water purification technologies, this highly efficient solar evaporator provides a new practical method to utilize clean energy for clean water production.

     

  • loading
  • [1]
    M. Mekonnen, A. Y. Hoekstra, Sci. Adv. 2 (2016) e1500323
    [2]
    M. Elimelech, W. A. Phillip, Science 333 (2011) 712-717
    [3]
    J. Lou, Y. Liu, Z. Wang, D. Zhao, C. Song, J. Wu, N. Dasgupta, W. Zhang, D. Zhang, P. Tao, W. Shang, T. Deng, ACS Appl. Mater. Interfaces 8 (2016) 14628-14636
    [4]
    Y. Xia, Q. Hou, H. Jubaer, Y. Li, Y. Kang, S. Yuan, H. Liu, M. W. Woo, L. Zhang, L. Gao, H. Wang, X. Zhang, Energy Environ. Sci. 12 (2019) 1840-1847
    [5]
    C. Liu, D. Kong, P. Hsu, H. Yuan, H. Lee, Y. Liu, H. Wang, S. Wang, K. Yan, D. Lin, P. A. Maraccini, K. M. Parker, A. B. Boehm, Y. Cui, Nat. Nanotechnol. 11 (2016) 1098-1104
    [6]
    D. K. Nandakumar, Y. Zhang, S. K. Ravi, N. Guo, C. Zhang, S. C. Tan, Adv. Mater. 31 (2019) 1806730
    [7]
    P. Tao, G. Ni, C. Song, W. Shang, J. Wu, J. Zhu, G. Chen, T. Deng, Nat. Energy 3 (2018) 1031-1041
    [8]
    P. Zhang, Q. Liao, H. Yao, Y. Huang, H. Cheng, L. Qu, Energy Storage Mater. 18 (2019) 429-446
    [9]
    X. Hu, W. Xu, L. Zhou, Y. Tan, Y. Wang, S. Zhu, J. Zhu, Adv. Mater. 29 (2017) 1604031
    [10]
    F. Wang, D. Wei, Y. Li, T. Chen, P. Mu, H. Sun, Z. Zhu, W. Liang, A. Li, J. Mater. Chem. A 7 (2019) 18311-18317
    [11]
    S. Meng, X. Zhao, C. Tang, P. Yu, R. Bao, Z. Liu, M. Yang, W. Yang, J. Mater. Chem. A 8 (2020) 2701-2711
    [12]
    Z. Sun, J. Wang, Q. Wu, Z. Wang, Z. Wang, J. Sun, C. Liu, Adv. Funct. Mater. 29 (2019) 1901312
    [13]
    Y. Liu, J. Lou, M. Ni, C. Song, J. Wu, N. P. Dasgupta, P. Tao, W. Shang, T. Deng, ACS Appl. Mater. Interfaces 8 (2016) 772-779
    [14]
    X. Zhao, L. Peng, C. Tang, J. Pu, X. Zha, K. Ke, R. Bao, M. Yang, W. Yang, Mater. Horiz. 7 (2020) 855-865
    [15]
    Z. Deng, L. Miao, P. Liu, J. Zhou, P. Wang, Y. Gu, X. Wang, H. Cai, L. Sun, S. Tanemura, Nano Energy 55 (2019) 368-376
    [16]
    X. Li, R. Lin, G. Ni, N. Xu, X. Hu, B. Zhu, G. Lv, J. Li, S. Zhu, J. Zhu, Natl. Sci. Rev. 5 (2018) 70-77
    [17]
    Y. Shi, R. Li, Y. Jin, S. Zhuo, L, Shi, J. Chang, S. Hong, K. Ng, P. Wang, Joule 2 (2018) 1171-1186
    [18]
    P. Mu, W. Bai, Y. Fan, Z. Zhang, H. Sun, Z. Zhu, W. Liang, A. Li, J. Mater. Chem. A 7 (2019) 9673-9679
    [19]
    Z. Liu, B. Wu, B. Zhu, Z. Chen, M. Zhu, X. Liu, Adv. Funct. Mater. 29 (2019) 1905485
    [20]
    Ha. Kim, W. Ren, J. Kim, J. Yoon, Chem. Soc. Rev. 41 (2012) 3210-3244
    [21]
    M. Mcnutt, Science 341 (2013) 1430
    [22]
    W. F. Fitzgerald, C. H. Lamborg, C. R. Hammerschmidt, Chem. Rev. 107 (2007) 641-662
    [23]
    W. Li, M. C. Tekell, Y. Huang, K. Bertelsmann, M. Lau, D. Fan, Adv. Energy Mater. 8 (2018) 1802108
    [24]
    H. Cheng, Z. Li, Y. Huang, L. Liu, H. Wu, ACS Appl. Mater. Interfaces 9 (2017) 11889-11894
    [25]
    Q. Sun, B. Aguila, J. Perman, L. D. Earl, C. W. Abney, Y. Cheng, H. Wei, N. Nguyen, L. Wojtas, S. Ma, J. Am. Chem. Soc. 139 (2017) 2786-2793
    [26]
    Y. Fan, L. Han, Y. Yang, Z. Sun, N. Li, B. Li, H. Luo, N. Li, Environ. Sci. Technol. 54 (2020) 10270-10278
    [27]
    Y. Liu, Z. Liu, Q. Huang, X. Liang, X. Zhou, H. Fu, Q. Wu, J. Zhang, W. Xie, J. Mater. Chem. A 7 (2019) 2581-2588
    [28]
    X. Wang, X. Li, G. Liu, J. Li, X. Hu, N. Xu, W. Zhao, B. Zhu, J. Zhu, Angew. Chem. Int. Ed. 58 (2019) 12054-12058
    [29]
    S. Wu, G. Xiong, H. Yang, B. Gong, Y. Tian, C. Xu, Y. Wang, T. Fisher, J. Yan, K. Cen, T. Luo, X. Tu, Z. Bo, K. (Ken) Ostrikov, Adv. Energy Mater. 9 (2019) 1901286
    [30]
    D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, ACS Nano 4 (2010) 4806-4814
    [31]
    Y. Zhang, M. Umair, X. Jin, R. Lu, S. Zhang, B. Tang, J. Mater. Chem. A 7 (2019) 8521-8526
    [32]
    P. Zhang, J. Li, L. Lv, Y. Zhao, L. Qu. ACS Nano 11 (2017) 5087-5093
    [33]
    P. Zhang, Q. Liao, H. Yao, H. Cheng, Y. Huang, C. Yang, L. Jiang, L. Qu. J. Mater. Chem. A 6 (2018) 15303-15309
    [34]
    D. Kim, W. Jang, K. Choi, J. Choi, J. Pyun, J. Lim, K. Char, S. Im, Sci. Adv. 6 (2020) eabb5320
    [35]
    H. Kim, J. Lee, H. Ahn, O. Kim, M. Park. Nat. Commun. 6 (2015) 7278
    [36]
    X. Hu, J. Zhu. Adv. Funct. Mater. 30 (2020) 1907234
    [37]
    H. Wang, X. Mi, Y. Li, S. Zhan, Adv. Mater. 32 (2020) 1806843
    [38]
    X. Zhang, Z. Sui, B. Xu, S. Yue, Y. Luo, W. Zhan, B. Liu, J. Mater. Chem. 21 (2011) 6494-6497
    [39]
    Y. Zhou, X. Wang, X. Liu, D. Sheng, F. Ji, L. Dong, S. Xu, H. Wu, Y. Yang, Carbon 142 (2019) 558-566
    [40]
    F. Li, B. Tang, S. Wu, S. Zhang, Small 13 (2017) 1602565
    [41]
    F. Meng, M. Umair, K. Iqbal, X. Jin, S. Zhang, B. Tang, ACS Appl. Mater. Interfaces 11 (2019) 13022-13028
    [42]
    X. Li, G. Ni, T. Cooper, N. Xu, J. Li, L. Zhou, X. Hu, B. Zhu, P. Yao, J. Zhu, Joule 3 (2019) 1798-1803
    [43]
    L. Zhang, B. Tang, J. Wu, R. Li, P. Wang, Adv. Mater. 27 (2015) 4889-4894
    [44]
    X. Mi, G. Huang, W. Xie, W. Wang, Y. Liu, J. Gao, Carbon 50 (2012) 4856-4864
    [45]
    H. Gao, Y. Sun, J. Zhou, R. Xu, H. Duan, ACS Appl. Mater. Interfaces 5 (2013) 425-432
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (229) PDF downloads(18) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return