Volume 8 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Wei Wang, Yiling Xie, Fangfang He, Yuan Wang, Weinan Xue, Yan Li. Efficient quantum dot sensitized solar cells via improved loading amount management. Green Energy&Environment, 2023, 8(1): 213-223. doi: 10.1016/j.gee.2021.04.002
Citation: Wei Wang, Yiling Xie, Fangfang He, Yuan Wang, Weinan Xue, Yan Li. Efficient quantum dot sensitized solar cells via improved loading amount management. Green Energy&Environment, 2023, 8(1): 213-223. doi: 10.1016/j.gee.2021.04.002

Efficient quantum dot sensitized solar cells via improved loading amount management

doi: 10.1016/j.gee.2021.04.002
  • High light-harvesting efficiency and low interfacial charge transfer loss are essential for the fabrication of high-efficiency quantum dot-based solar cells (QDSCs). Increasing the thickness of mesoporous TiO2 films can improve the loading of pre-synthesized QDs on the film and enhance the absorbance of photoanode, but commonly accompanied by the increase in the unfavorable charge recombination due to prolonged electron transmission paths. Herein, we systematically studied the influence of the balance between QD loading and TiO2 film thickness on the performance of QDSCs. It is found that the relative thin photoanode prepared by the cationic surfactant-assisted multiple deposition procedure has achieved a high QD loading which is comparable to that of the thick photoanode commonly used. Under AM 1.5G illumination, Zn-Cu-In-Se and Zn-Cu-In-S based QDSCs with optimized 11.8 μm photoanodes show the PCE of 10.03% and 8.53%, respectively, which are comparable to the corresponding highest PCE of Zn-Cu-In-Se and Zn-Cu-In-S QDSCs (9.74% and 8.75%) with over 25.0 μm photoanodes. Similarly, an impressive PCE of 6.14% was obtained for the CdSe based QDSCs with a 4.1 μm photoanode, which is slightly lower than the best PCE (7.05%) of reference CdSe QDSCs with 18.1 μm photoanode.

     

  • • The relative thin photoanode with a high QD loading has been prepared by a multiple deposition procedure. • With 11.8 μm photoanodes, Zn-Cu-In-Se and Zn-Cu-In-S based QDSCs show the best PCE of 10.03% and 8.53%, respectively. • An impressive PCE of 6.14% for the optimized CdSe based QDSCs with a 4.1 μm photoanode was obtained.
  • loading
  • [1]
    A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, J. C. Johnson. Chem. Rev. 110 (2010) 6873-6890
    [2]
    P. V. Kamat, K. Tvrdy, D. R. Baker, J. G. Radich. Chem. Rev. 110 (2010) 6664-6688
    [3]
    P. V. Kamat, J. Phys. Chem. Lett. 4 (2013) 908-918
    [4]
    F. P. Garcia de Arquer, A. Armin, P. Meredith, E. H. Sargent. Nat. Rev. 2 (2017) 16100
    [5]
    Z. Pan, H. Rao, I. Mora-Sero, J. Bisquert, X. Zhong. Chem. Soc. Rev. 47 (2018) 7659-7702
    [6]
    Z. Du, M. Artemyev, J. Wang, J. Tang. J. Mater. Chem. A 7 (2019) 2464-2489
    [7]
    I. Mora-Sero. Adv. Energy Mater. 10 (2020) 2001774
    [8]
    O. E. Semonin, J. M. Luther, S. Choi, H.-Y. Chen, J. Gao, A. J. Nozik, M. C. Beard. Science 334 (2011) 1530-1533
    [9]
    M. L. Bohm, T. C. Jellicoe, M. Tabachnyk, N. J. L. K. Davis, F. Wisnivesky-Rocca-Rivarola, C. Ducati, B. Ehrler, A. A. Bakulin, N. C. Greenham. Nano Lett. 15 (2015) 7987-7993
    [10]
    A. Polman, M. Knight, E. C. Garnett, B. Ehrler, W. C. Sinke, Science 352 (2016) aad4424
    [11]
    C. Coughlan, M. Ibanez, O. Dobrozhan, A. Singh, A. Cabot, K. M. Ryan, Chem. Rev. 117 (2017) 5865-6109
    [12]
    J. Du, R. Singh, I. Fedin, A. S. Fuhr, V. I. Klimov. Nat. Energy 5 (2020) 409-417
    [13]
    J. Wang, I. Mora-Sero, Z. Pan, K. Zhao, H. Zhang, Y. Feng, G. Yang, X. Zhong, J. Bisquert. J. Am. Chem. Soc. 135 (2013) 15913-15922
    [14]
    J. Y. Kim, J. Yang, J. H. Yu, W. Baek, C. H. Lee, H. J. Son, T. Hyeon, M. J. Ko. ACS Nano 9 (2015) 11286-11295
    [15]
    K. Zhao, Z. Pan, I. Mora-Sero, E. Canovas, H. Wang, Y. Song, X. Gong, J. Wang, M. Bonn, J. Bisquert, X. Zhong. J. Am. Chem. Soc. 137 (2015) 5602-5609
    [16]
    S. Jiao, J. Wang, Q. Shen, Y. Li, X. Zhong. J. Mater. Chem. A 4 (2016) 7214-7221
    [17]
    J. Du, Z. Du, J. Hu, Z. Pan, Q. Shen, J. Sung, D. Long, H. Dong, L. Sun, X. Zhong, L. Wan. J. Am. Chem. Soc. 138 (2016) 4201-4209
    [18]
    A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, J. M. Luther. Science 354 (2016) 92-95
    [19]
    M. Mohammadnezhad, G. S. Selopal, O. Cavuslar, D. Barba, E. G. Durmusoglu, H. Y. Acar, Z. M. Wang, G. P. Lopinski, B. Stansfield, H. Zhao, F. Rosei. Chem. Eng. J. (2020) 127756, DOI: 10.1016/j.cej.2020.127756
    [20]
    W. Wang, W. Feng, J. Du, W. Xue, L. Zhang, L. Zhao, Y. Li, X. Zhong. Adv. Mater. 30 (2018) 1705746
    [21]
    W. Wang, L. Zhao, Y. Wang, W. Xue, F. He, Y. Xie, Y. Li. J. Am. Chem. Soc. 141 (2019) 4300-4307
    [22]
    H. Song, Y. Lin, M. Zhou, H. Rao, Z. Pan, X. Zhong. Angew. Chem. Int. Ed. 60 (2021) 6137-6144
    [23]
    H. II Kim, S.-W. Baek, H. J. Cheon, S. U. Ryu, S. Lee, M. Choi, K. Choi, M. Biondi, S. Hoogland, F. P. G. de Arquer, S.-K. Kwon, Y.-H. Kim, T. Park, E. H. Sargent. Adv. Mater. 32 (2020) 2004985
    [24]
    M. Hao, Y. Bai, S. Zeiske, L. Ren, J. Liu, Y. Yuan, N. Zarrabi, N. Cheng, M. Ghasemi, P. Chen, M. Lyu, D. He, J.-H. Yun, Y. Du, Y. Wang, S. Ding, A. Armin, P. Meredith, G. Liu, H.-M. Cheng, L. Wang. Nat. Energy 5 (2020) 79-88
    [25]
    G. S. Selopal, H. Zhao, X. Tong, D. Benetti, F. Navarro-Pardo, Y. Zhou, D. Barba F. Vidal, Z. M. Wang, F. Rosei. Adv. Funct. Mater. 27 (2017) 1701468
    [26]
    G. S. Selopal, H. Zhao, G. Liu, H. Zhang, X. Tong, K. Wang, J. Tang, X. Sun, S. Sun, F. Vidal, Y. Wang, Z. M. Wang, F. Rosei. Nano Energy 55 (2019) 377-388
    [27]
    G. S. Selopal, H. Zhao, Z. M. Wang, F. Rosei. Adv. Funct. Mater. 30 (2020) 1908762
    [28]
    Z. Du, H. Zhang, H. Bao, X. Zhong. J. Mater. Chem. A 2 (2014) 13033-13040
    [29]
    Li, W.; Zhong, X. J. Phys. Chem. Lett. 6 (2015) 796-806
    [30]
    S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Pechy, M. Takata, H. Miura, S. Uchida, M. Gratzel. Adv. Mater. 18 (2006) 1202-1205
    [31]
    D. Kuang, S. Ito, B. Wenger, C. Klein, J.-E. Moser, R. Humphry-Baker, S. M. Zakeeruddin, M. Graetzel. J. Am. Chem. Soc. 128 (2006) 4146-4154
    [32]
    J. Tian, R. Gao, Q. Zhang, S. Zhang, Y. Li, J. Lan, X. Qu, G. Cao. J. Phys. Chem. C 116 (2012) 18655-18662
    [33]
    I. Robel, V. Subramanian, M. Kuno, P. V. Kamat. J. Am. Chem. Soc. 128 (2006) 2385-2393
    [34]
    Q. Zhang, X. Guo, X. Huang, S. Huang, D. Li, Y. Luo, Q. Shen, T. Toyoda, Q. Meng. Phys. Chem. Chem. Phys. 13 (2011) 4659-4667
    [35]
    X. Meng, J. Du, H. Zhang, X. Zhong. RSC Adv. 5 (2015) 86023-86030
    [36]
    L. Yue, H. Rao, J. Du, Z. Pan, J. Yu, X. Zhong. RSC Adv. 8 (2018) 3637-3645
    [37]
    G. Hodes. J. Phys. Chem. C 112 (2008) 17778-17787
    [38]
    S.-Y. Lee, S.-M. Yoo, H. J. Lee. Langmuir 36 (2020) 4144-4152
    [39]
    J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Y. Lin, Y. Xie, Y. Wei. Chem. Soc. Rev. 46 (2017) 5975-6023
    [40]
    Z. Yang, C. Y. Chen, P. Roy, H. T. Chang. Chem. Commun. 47 (2011) 9561-9571
    [41]
    M. Pazoki, U. B. Cappel, E. M. J. Johansson, A. Hagfeldt, G. Boschloo. Energy Environ. Sci. 10 (2017) 672-709
    [42]
    K. Tvrdy, P. A. Frantsuzov, P. V. Kamat. Proc. Natl. Acad. Sci. 108 (2011) 29-34
    [43]
    N. S. Makarov, H. McDaniel, N. Fuke, I. Robel, and V. I. Klimov. J. Phys. Chem. Lett. 5 (2014) 111-118
    [44]
    P. K.Santra, P. V. Nair, K. G. Thomas, P. V. Kamat. J. Phys. Chem. Lett. 4 (2013) 722-729
    [45]
    J. Sun, J. Zhao, Y. Masumoto. Appl. Phys. Lett. 102 (2013) 053119
    [46]
    I. Robel, M. Kuno, P. V. Kamat. J. Am. Chem. Soc. 129 (2007) 4136-4137
    [47]
    F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, A. Hagfeldt. Sol. Energy Mater. Sol. Cells 87 (2005) 117-131
    [48]
    V. Gonzalez-Pedro, X. Xu, I. Mora-Sero, J. Bisquert. ACS Nano 4 (2010) 5783-5790
    [49]
    F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Sero, J. Bisquert. Phys. Chem. Chem. Phys. 13 (2011) 9083-9118
    [50]
    M. S. de la Fuente, R. S. Sanchez, V. Gonzalez-Pedro, P. P. Boix, S. G. Mhaisalkar, M. E. Rincon, J. Bisquert, I. Mora-Sero. J. Phys. Chem. Lett. 4 (2013) 1519-1525
    [51]
    V. Chakrapani, D. Baker, P. V. Kamat. J. Am. Chem. Soc. 133 (2011) 9607-9615
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (273) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return