Volume 7 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Hao Wan, Wei Ma, Kechao Zhou, Yijun Cao, Xiaohe Liu, Renzhi Ma. Advanced silicon nanostructures derived from natural silicate minerals for energy storage and conversion. Green Energy&Environment, 2022, 7(2): 205-220. doi: 10.1016/j.gee.2021.04.001
Citation: Hao Wan, Wei Ma, Kechao Zhou, Yijun Cao, Xiaohe Liu, Renzhi Ma. Advanced silicon nanostructures derived from natural silicate minerals for energy storage and conversion. Green Energy&Environment, 2022, 7(2): 205-220. doi: 10.1016/j.gee.2021.04.001

Advanced silicon nanostructures derived from natural silicate minerals for energy storage and conversion

doi: 10.1016/j.gee.2021.04.001
  • To effectively alleviate the ever-increasing energy crisis and environmental issues, clean and sustainable energy-related materials as well as the corresponding storage/conversion devices are in urgent demand. Silicon (Si) with the second most elemental abundance on the crust in the form of silicate or silica (SiO2) minerals, is an advanced emerging material showing high performance in energy-related fields (e.g. batteries, photocatalytic hydrogen evolution). For the improved performance in industry-scale applications, Si materials with delicate nanostructures and ideal compositions in a massive production are highly cherished. On account of the reserve, low cost and diverse micro-nanostructures, silicate minerals are proposed as promising raw materials. In the article, crystal structures and the reduction approaches for silicate minerals, as well as recent progress on the as-reduced Si products for clean energy storage/conversion, are presented systematically. Moreover, some cutting-edge fields involving Si materials are discussed, which may offer deep insights into the rational design of advanced Si nanostructures for extended energy-related fields.

     

  • • Si nanomaterials of diverse morphologies extracted from natural silicate minerals were reviewed for the first time. • Both energy storage/conversion applications of Si nanostructures prepared via the reduction strategies were summarized. • Several typical reduction strategies for the thermic reduction of natural silicate minerals were introduced.
  • loading
  • [1]
    Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov, T.F. Jaramillo, Science 355(2017) eaad4998.
    [2]
    G. Chen, L. Yan, H. Luo, S. Guo, Adv. Mater. 28(2016) 7580-7602.
    [3]
    L. Wang, B. Chen, J. Ma, G. Cui, L. Chen, Chem. Soc. Rev. 47(2018) 6505-6602.
    [4]
    H. Li, Joule 3(2019) 911-914.
    [5]
    A. Eftekhari, ACS Sustain. Chem. Eng. 7(2019) 5602-5613.
    [6]
    G. Zhu, R. Guo, W. Luo, H.K. Liu, W. Jiang, S.X. Dou, J. Yang, Nat. Sci. Rev. 8(2021) nwaa152.
    [7]
    Z. Pan, H. Sun, J. Pan, J. Zhang, B. Wang, H. Peng, Carbon 133(2018) 384-389.
    [8]
    R. Guo, Y. Wang, X. Shan, Y. Han, Z. Cao, H. Zheng, Carbon 152(2019) 671-679.
    [9]
    C. Acar, I. Dincer, Int. J. Hydrogen Energy 45(2020) 3396-3406.
    [10]
    J. Li, Z. Xia, M. Zhang, S. Zhang, J. Li, Y. Ma, Y. Qu, J. Mater. Chem. A 7(2019) 17775-17781.
    [11]
    J.A. Rodriguez, E.R. Remesal, P.J. Ramírez, I. Orozco, Z. Liu, J. Graciani, S.D. Senanayake, J.F. Sanz, ACS Catal. 9(2019) 10751-10760.
    [12]
    Y. Chen, J. Lin, L. Li, B. Qiao, J. Liu, Y. Su, X. Wang, ACS Catal. 8(2018) 859-868.
    [13]
    W. Ma, H.R. Li, S.Y. Jiang, G.H. Han, J. Gao, X.M. Yu, H.L. Lian, W.F. Tu, Y.F. Han, R.Z. Ma, ACS Sustain. Chem. Eng. 6(2018) 14441-14449.
    [14]
    H. Wan, X. Liu, H. Wang, R. Ma, T. Sasaki, Nanoscale Horiz. 4(2019) 789-808.
    [15]
    W. Ma, M. Miao, G. Han, J. Wu, X. Yu, J. Zheng, S. Jiang, Y.-f. Han, R. Ma, ACS Sustain. Chem. Eng. 7(2019) 15127-15136.
    [16]
    Q. Xiang, J. Yu, M. Jaroniec, J. Am. Chem. Soc. 134(2012) 6575-6578.
    [17]
    P. Pachfule, A. Acharjya, J. Roeser, T. Langenhahn, M. Schwarze, R. Schomaecker, A. Thomas, J. Schmidt, J. Am. Chem. Soc. 140(2018) 1423-1427.
    [18]
    P. Ganguly, M. Harb, Z. Cao, L. Cavallo, A. Breen, S. Dervin, D.D. Dionysiou, S.C. Pillai, ACS Energy Lett. 4(2019) 1687-1709.
    [19]
    H. Zhang, P. Zhang, M. Qiu, J. Dong, Y. Zhang, X.W. Lou, Adv. Mater. 31(2019) 1804883.
    [20]
    J. Li, R. Li, C.H. Chiang, Y. Zhong, H. Shen, E. Song, M. Hill, S.M. Won, K.J. Yu, J.M. Baek, Y. Lee, J. Viventi, Y. Huang, J.A. Rogers, Adv. Mater. Tech. 5(2020) 1900800.
    [21]
    M.T. Ghoneim, M.M. Hussain, Small 13(2017) 1601801.
    [22]
    A. Qiu, P. Li, Z. Yang, Y. Yao, I. Lee, J. Ma, Adv. Funct. Mater. 29(2019) 1806306.
    [23]
    S.K. Kang, R.K.J. Murphy, S.W. Hwang, S.M. Lee, D.V. Harburg, N.A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J.G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R.C. Webb, C.H. Lee, S. Chung, D.S. Wie, A.D. Gujar, B. Vemulapalli, A.H. Kim, K.M. Lee, J. Cheng, Y. Huang, S.H. Lee, P.V. Braun, W.Z. Ray, J.A. Rogers, Nature 530(2016) 71-76.
    [24]
    J. Ryu, J.H. Seo, G. Song, K. Choi, D. Hong, C. Wang, H. Lee, J.H. Lee, S. Park, Nat. Commun. 10(2019) 2351.
    [25]
    Y. Son, J. Ma, N. Kim, T. Lee, Y. Lee, J. Sung, S.-H. Choi, G. Nam, H. Cho, Y. Yoo, J. Cho, Adv. Energy Mater. 9(2019) 1803480.
    [26]
    L. Zheng, J. Wang, Y. Xuan, M. Yan, X. Yu, Y. Peng, Y.-B. Cheng, J. Mater. Chem. A 7(2019) 26479-26489.
    [27]
    D. Agarwal, C.O. Aspetti, M. Cargnello, M. Ren, J. Yoo, C.B. Murray, R. Agarwal, Nano Lett. 17(2017) 1839-1845.
    [28]
    F. Wang, G. Chen, N. Zhang, X. Liu, R. Ma, Carbon Energy 1(2019) 219-245.
    [29]
    F. Dai, R. Yi, H. Yang, Y. Zhao, L. Luo, M.L. Gordin, H. Sohn, S. Chen, C. Wang, S. Zhang, D. Wang, ACS Appl. Mater. Interfaces 11(2019) 13257-13263.
    [30]
    J. Wang, L. Liao, H.R. Lee, F. Shi, W. Huang, J. Zhao, A. Pei, J. Tang, X. Zheng, W. Chen, Y. Cui, Nano Energy 61(2019) 404-410.
    [31]
    C.H. Jung, J. Choi, W.S. Kim, S.H. Hong, J. Mater. Chem. A 6(2018) 8013-8020.
    [32]
    H. Zhao, X. Xu, Y. Yao, H. Zhu, Y. Li, ChemElectrochem 6(2019) 4617-4625.
    [33]
    J.M. Kim, V. Guccini, D. Kim, J. Oh, S. Park, Y. Jeon, T. Hwang, G. Salazar-Alvarez, Y. Piao, J. Mater. Chem. A 6(2018) 12475-12483.
    [34]
    P. Li, J.Y. Hwang, Y.K. Sun, ACS Nano 13(2019) 2624-2633.
    [35]
    S. Chae, S.H. Choi, N. Kim, J. Sung, J. Cho, Angew. Chem. Int. Ed. 59(2020) 110-135.
    [36]
    G. Zhu, F. Zhang, X. Li, W. Luo, L. Li, H. Zhang, L. Wang, Y. Wang, W. Jiang, H.K. Liu, S.X. Dou, J. Yang, Angew. Chem. Int. Ed. 58(2019) 6669-6673.
    [37]
    Z. Wang, Y. Li, S. Huang, L. Liu, Y. Wang, J. Jin, D. Kong, L. Zhang, O.G. Schmidt, J. Mater. Chem. A 8(2020) 4836-4843.
    [38]
    X. Zhang, X. Qiu, D. Kong, L. Zhou, Z. Li, X. Li, L. Zhi, ACS Nano 11(2017) 7476-7484.
    [39]
    D. Zhang, J. Shi, W. Zi, P. Wang, S. Liu, ChemSusChem 10(2017) 4324-4341.
    [40]
    Y.A. Vlasov, X.Z. Bo, J.C. Sturm, D.J. Norris, Nature 414(2001) 289-293.
    [41]
    D. Liu, L. Li, Y. Gao, C. Wang, J. Jiang, Y. Xiong, Angew. Chem. Int. Ed. 54(2015) 2980-2985.
    [42]
    H. Song, D. Liu, J. Yang, L. Wang, H. Xu, Y. Xiong, ChemNanoMat 3(2017) 22-26.
    [43]
    A. Islam, S.H. Teo, M.R. Awual, Y.H. Taufiq-Yap, J. Clean. Prod. 244(2020) 118805.
    [44]
    H. Sugimoto, H. Zhou, M. Takada, J. Fushimi, M. Fujii, J. Mater. Chem. A 8(2020) 15789-15794.
    [45]
    A.P.Y. Wong, W. Sun, C. Qian, A.A. Jelle, J. Jia, Z. Zheng, Y. Dong, G.A. Ozin, Adv. Sustain. Syst. 1(2017) 1700118.
    [46]
    M. Kan, Z.W. Yan, X. Wang, J.L. Hitt, L. Xiao, J.M. McNeill, Y. Wang, Y. Zhao, T.E. Mallouk, Angew. Chem. Int. Ed. 132(2020) 11559-11566.
    [47]
    H. Itahara, X. Wu, H. Imagawa, S. Yin, K. Kojima, S.F. Chichibu, T. Sato, Dalton Trans. 46(2017) 8643-8648.
    [48]
    C. Qian, W. Sun, D.L.H. Hung, C. Qiu, M. Makaremi, S.G.H. Kumar, L. Wan, M. Ghoussoub, T.E. Wood, M. Xia, A.A. Tountas, Y.F. Li, L. Wang, Y. Dong, I. Gourevich, C.V. Singh, G.A. Ozin, Nat. Catal. 2(2019) 46-54.
    [49]
    M. Dasog, S. Kraus, R. Sinelnikov, J.G.C. Veinot, B. Rieger, Chem. Commun. 53(2017) 3114-3117.
    [50]
    H. Wan, F. Chen, W. Ma, X. Liu, R. Ma, Nanoscale 12(2020) 21479-21496.
    [51]
    H. Wan, M. Lv, X. Liu, G. Chen, N. Zhang, Y. Cao, H. Wang, R. Ma, G. Qiu, ACS Sustain. Chem. Eng. 7(2019) 11841-11849.
    [52]
    H. Wan, R. Ma, X. Liu, J. Pan, H. Wang, S. Liang, G. Qiu, T. Sasaki, ACS Energy Lett 3(2018) 1254-1260.
    [53]
    J. Lang, B. Ding, S. Zhang, H. Su, B. Ge, L. Qi, H. Gao, X. Li, Q. Li, H. Wu, Adv. Mater. 29(2017) 1701777.
    [54]
    S. Chen, Z. Chen, X. Xu, C. Cao, M. Xia, Y. Luo, Small 14(2018) 1703361.
    [55]
    N. Lin, Y. Han, L. Wang, J. Zhou, J. Zhou, Y. Zhu, Y. Qian, Angew. Chem. Int. Ed. 54(2015) 3822-3825.
    [56]
    L. Zhang, X. Liu, Q. Zhao, S. Dou, H. Liu, Y. Huang, X. Hu, Energy Stor. Mater. 4(2016) 92-102.
    [57]
    W.U. Rehman, H. Wang, R.Z.A. Manj, W. Luo, J. Yang, Small (2019) 1904508.
    [58]
    P. Nie, Z. Le, G. Chen, D. Liu, X. Liu, H.B. Wu, P. Xu, X. Li, F. Liu, L. Chang, X. Zhang, Y. Lu, Small 14(2018) 1800635.
    [59]
    W. Weng, C. Zeng, W. Xiao, ACS Appl. Mater. Interfaces 11(2019) 9156-9163.
    [60]
    X. Li, Y. Han, Y. Ling, X. Wang, R. Sun, ACS Sustain. Chem. Eng. 3(2015) 1846-1852.
    [61]
    X. Zhou, L. Wu, J. Yang, J. Tang, L. Xi, B. Wang, J. Power Sources 324(2016) 33-40.
    [62]
    Q. Chen, S. Liu, R. Zhu, D. Wu, H. Fu, J. Zhu, H. He, J. Power Sources 405(2018) 61-69.
    [63]
    G.G. Eshetu, E. Figgemeier, ChemSusChem 12(2019) 2515-2539.
    [64]
    Z. Xu, J. Yang, H. Li, Y. Nuli, J. Wang, J. Mater. Chem. A 7(2019) 9432-9446.
    [65]
    J.K. Lee, C. Oh, N. Kim, J.-Y. Hwang, Y.K. Sun, J. Mater. Chem. A 4(2016) 5366-5384.
    [66]
    X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.J. Cheng, Nanomater. Energy 31(2017) 113-143.
    [67]
    M. Salah, P. Murphy, C. Hall, C. Francis, R. Kerr, M. Fabretto, J. Power Sources 414(2019) 48-67.
    [68]
    J. Entwistle, A. Rennie, S. Patwardhan, J. Mater. Chem. A 6(2018) 18344-18356.
    [69]
    Y. Qi, G. Wang, S. Li, T. Liu, J. Qiu, H. Li, Chem. Eng. J. 397(2020) 125380.
    [70]
    G. Zhu, W. Luo, L. Wang, W. Jiang, J. Yang, J. Mater. Chem. A 7(2019) 24715-24737.
    [71]
    J. Brodholt, Am. Mineral. 82(1997) 1049-1053.
    [72]
    W. Lv, N. Guo, Y. Jia, Q. Zhao, H. You, Opt. Mater. 35(2013) 1013-1018.
    [73]
    B. Sherriff, H. Grundy, J. Hartman, F. Hawthorne, P. Černý, Can. Mineral. 29(1991) 271-285.
    [74]
    L.W. Finger, Y. Ohashi, Am. Mineral. 61(1976) 303-310.
    [75]
    S. Saburi, I. Kusachi, C. Henmi, A. Kawahara, K. Henmi, I. Kawada, Mineral. J. 8(1976) 240-246.
    [76]
    A. Viani, A.F. Gaultieri, G. Artioli, Am. Mineral. 87(2002) 966-975.
    [77]
    J. Zhu, X. Liu, M.L. Geier, J.J. Mcmorrow, D. Jariwala, M.E. Beck, W. Huang, T.J. Marks, M.C. Hersam, Adv. Mater. 28(2016) 63-68.
    [78]
    K. Wen, J. Zhu, H. Chen, L. Ma, H. Liu, R. Zhu, Y. Xi, H. He, Langmuir 35(2019) 382-390.
    [79]
    P. Hu, H. Yang, Appl. Clay Sci. 74(2013) 58-65.
    [80]
    R. Demichelis, M.D.L. Pierre, M. Mookherjee, C.M. Zicovich-Wilson, R. Orlando, CrystEngComm 18(2016) 4412-4419.
    [81]
    M.S.S. Gusmão, P. Gopal, I. Siloi, S. Curtarolo, M. Fornari, M.B. Nardelli, Sci. Rep. 9(2019) 13698.
    [82]
    Y. Lvov, W. Wang, L. Zhang, R. Fakhrullin, Adv. Mater. 28(2016) 1227-1250.
    [83]
    N. Chandra, N. Agnihotri, S. Bhasin, A.R. Khan, J. Eur. Ceram. Soc. 25(2005) 81-88.
    [84]
    J. Zhang, T. Liu, R. Chen, X. Liu, RSC Adv. 4(2014) 406-408.
    [85]
    Z. Wei, M. Kierans, G.M. Gadd, Geomicrobiol. J. 29(2012) 323-331.
    [86]
    M. Magi, E. Lippmaa, A. Samoson, G. Engelhardt, A.R. Grimmer, J. Phys. Chem. 88(1984) 1518-1522.
    [87]
    Gardolinski, Peralta-Zamora, F. Wypych, J. Colloid Interface Sci. 211(1999) 137-141.
    [88]
    G. Lujanienė, S. Motiejūnas, J. Šapolaitė, J. Radioanal. Nucl. Chem. _ 274(2007) 345-353.
    [89]
    K. Wada, H. Yamauchi, Y. Kakuto, S.I. Wada, Clay Sci. 6(1985) 177-186.
    [90]
    S. Guzii, P. Krivenko, Mater. Sci. 2(2018) 1-7.
    [91]
    P. Liu, L. Jiang, L. Zhu, A. Wang, ACS Sustain. Chem. Eng. 2(2014) 643-651.
    [92]
    H. Wan, H. Xiong, X. Liu, G. Chen, N. Zhang, H. Wang, R. Ma, G. Qiu, Dalton Trans. 47(2018) 7522-7527.
    [93]
    H. Uno, K. Tamura, H. Yamada, K. Umeyama, T. Hatta, Y. Moriyoshi, Appl. Clay Sci. 46(2009) 81-87.
    [94]
    H. Laudelout, R. van Bladel, G.H. Bolt, A.L. Page, Trans. Faraday Soc. 64(1968) 1477-1488.
    [95]
    X. Qu, P. Liu, D. Zhu, Environ. Sci. Technol. 42(2008) 1109-1116.
    [96]
    Q. Chen, R. Zhu, Q. He, S. Liu, D. Wu, H. Fu, J. Du, J. Zhu, H. He, Chem. Commun. 55(2019) 2644-2647.
    [97]
    X.F. Pan, H.L. Gao, Y. Lu, C. Wu, Y. Wu, X.Y. Wang, Z. Pan, L. Dong, Y. Song, H. Cong, S. Yu, Nat. Commun. 9(2018) 2974.
    [98]
    Š. Makó, A. Kovács, V. Antal, T. Kristóf, Appl. Clay Sci. 146(2017) 131-139.
    [99]
    G.F. Walker, W.G. Garrett, Science 156(1967) 385-387.
    [100]
    H. Yao, L. Mao, Y. Yan, H. Cong, X. Lei, S. Yu, ACS Nano 6(2012) 8250-8260.
    [101]
    H. Wan, A. Yan, H. Xiong, G. Chen, N. Zhang, Y. Cao, X. Liu, Appl. Clay Sci. 194(2020) 105695.
    [102]
    M. Barati, S. Sarder, A. Mclean, R. Roy, J. Non-Cryst. Solids 357(2011) 18-23.
    [103]
    K. Itaka, T. Ogasawara, A. Boucetta, R. Benioub, M. Sumiya, T. Hashimoto, H. Koinuma, Y. Furuya, J. Phys. Conf. Ser. 596(2015) 12015.
    [104]
    D.H. Filsinger, D.B. Bourrie, J. Am. Ceram. Soc. 73(1990) 1726-1732.
    [105]
    O. Takeda, T.H. Okabe, Mater. Trans. 47(2006) 1145-1154.
    [106]
    O. Takeda, T.H. Okabe, Metall. Mater. Trans. B 37(2006) 823-830.
    [107]
    I. Park, T.H. Okabe, Y. Waseda, H.S. Yu, O.Y. Lee, Mater. Trans. 42(2001) 850-855.
    [108]
    Z. Bao, M.R. Weatherspoon, S. Shian, Y. Cai, P.D. Graham, S.M. Allan, G. Ahmad, M.B. Dickerson, B.C. Church, Z. Kang, H.W. Abernathy III,C.J. Summers, M. Liu, M. Liu, K.H. Sandhage, Nature 446(2007) 172-175.
    [109]
    X. Li, P. Yan, B. Arey, W. Luo, X. Ji, C. Wang, J. Liu, J.G. Zhang, Nano Energy 20(2015) 68-75.
    [110]
    T. Bok, S. Choi, J. Lee, S. Park, J. Mater. Chem. A 2(2014) 14195-14200.
    [111]
    W.S. Kim, Y. Hwa, J.H. Shin, M. Yang, H.J. Sohn, S.H. Hong, Nanoscale 6(2014) 4297-4302.
    [112]
    J. Ahn, H.S. Kim, J.K. Pyo, J.K. Lee, W.C. Yoo, Chem. Mater. 28(2016) 1526-1536.
    [113]
    N. Lin, Y. Han, J. Zhou, K. Zhang, T. Xu, Y. Zhu, Y. Qian, Energy Environ. Sci. 8(2015) 3187-3191.
    [114]
    P. Gao, X. Huang, Y. Zhao, X. Hu, D. Cen, G. Gao, Z. Bao, Y. Mei, Z. Di, G. Wu, ACS Nano 12(2018) 11481-11490.
    [115]
    T. Nohira, K. Yasuda, Y. Ito, Nat. Mater. 2(2003) 397-401.
    [116]
    Y. Dong, T. Slade, M.J. Stolt, L. Li, S.N. Girard, L. Mai, J. Song, Angew. Chem. Int. Ed. 56(2017) 14453-14457.
    [117]
    S.K. Cho, F.R.F. Fan, A.J. Bard, Angew. Chem. Int. Ed. 124(2012) 12912-12916.
    [118]
    X. Jin, P. Gao, D. Wang, X. Hu, G.Z. Chen, Angew. Chem. Int. Ed. 43(2004) 733-736.
    [119]
    X. Zhou, H. Xie, X. He, Z. Zhao, Q. Ma, M. Cai, H. Yin, Energy Environ. Mater. 3(2020) 166-176.
    [120]
    S. Praneetha, A.V. Murugan, ACS Sustain. Chem. Eng. 3(2015) 224-236.
    [121]
    Y. Lai, J.R. Thompson, M. Dasog, Chem. Eur J. 24(2018) 7913-7920.
    [122]
    H. Sun, J. Chen, S. Liu, D.K. Agrawal, Y. Zhao, D. Wang, Z. Mao, Int. J. Hydrogen Energy 44(2019) 7216-7221.
    [123]
    J. Xie, G. Wang, Y. Huo, S. Zhang, G. Cao, X. Zhao, Electrochim. Acta 135(2014) 94-100.
    [124]
    W. Wang, Z. Favors, R. Ionescu, R. Ye, H.H. Bay, M. Ozkan, C.S. Ozkan, Sci. Rep. 5(2015) 8781.
    [125]
    Q. Chen, R. Zhu, S. Liu, D. Wu, H. Fu, J. Zhu, H. He, J. Mater. Chem. A 6(2018) 6356-6362.
    [126]
    H. Wang, W. Tang, L. Ni, W. Ma, G. Chen, N. Zhang, X. Liu, R. Ma, J. Phys. Chem. Solid. 137(2020) 109227.
    [127]
    J. Ryu, D. Hong, S. Choi, S. Park, ACS Nano 10(2016) 2843-2851.
    [128]
    X. Huang, D. Cen, R. Wei, H. Fan, Z. Bao, ACS Appl. Mater. Interfaces 11(2019) 26854-26862.
    [129]
    J. Ryu, D. Hong, M. Shin, S. Park, ACS Nano 10(2016) 10589-10597.
    [130]
    Y.K. Kho, A. Iwase, W.Y. Teoh, L. Mädler, A. Kudo, R. Amal, J. Phys. Chem. C 114(2010) 2821-2829.
    [131]
    J. Ryu, Y.J. Jang, S. Choi, H.J. Kang, H. Park, J.S. Lee, S. Park, NPG Asia Mater. 8(2016) e248.
    [132]
    Y.J. Jang, J. Ryu, D. Hong, S. Park, J.S. Lee, Chem. Commun. 52(2016) 10221-10224.
    [133]
    S. Solomon, G.K. Plattner, R. Knutti, P. Friedlingstein, Proc. Natl. Acad. Sci. 106(2009) 1704-1709.
    [134]
    S. Wu, H. Pang, W. Zhou, B. Yang, X. Meng, X. Qiu, G. Chen, L. Zhang, S. Wang, X. Liu, R. Ma, J. Ye, N. Zhang, Nanoscale 12(2020) 8693-8700.
    [135]
    Y. Luo, L.Z. Dong, J. Liu, S.L. Li, Y.Q. Lan, Coord. Chem. Rev. 390(2019) 86-126.
    [136]
    W. Sun, X. Yan, C. Qian, P.N. Duchesne, S.G.H. Kumar, G.A. Ozin, Faraday Discuss. 222(2020) 424-432.
    [137]
    S.A. Martell, Y. Lai, E. Trayer, J. Macinnis, D.D. Richards, S. Macquarrie, M. Dasog, ACS Appl. Nano Mater. 2(2019) 5713-5719.
    [138]
    X. Mao, G. Kour, L. Zhang, T. He, S. Wang, C. Yan, Z. Zhu, A. Du, Catal. Sci. Technol. 9(2019) 6800-6807.
    [139]
    S. Venkateswaran, R. Yuvakkumar, V. Rajendran, Phosphorus Sulfur Silicon Relat. Elem. 188(2013) 1178-1193.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (126) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return