Volume 8 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Jiangjin Han, Zhiyue Dong, Liang Hao, Jiang Gong, Qiang Zhao. Poly(ionic liquid)-crosslinked graphene oxide/carbon nanotube membranes as efficient solar steam generators. Green Energy&Environment, 2023, 8(1): 151-162. doi: 10.1016/j.gee.2021.03.010
Citation: Jiangjin Han, Zhiyue Dong, Liang Hao, Jiang Gong, Qiang Zhao. Poly(ionic liquid)-crosslinked graphene oxide/carbon nanotube membranes as efficient solar steam generators. Green Energy&Environment, 2023, 8(1): 151-162. doi: 10.1016/j.gee.2021.03.010

Poly(ionic liquid)-crosslinked graphene oxide/carbon nanotube membranes as efficient solar steam generators

doi: 10.1016/j.gee.2021.03.010
  • Graphene oxide (GO) is regarded as a promising candidate to construct solar absorbers for addressing freshwater crisis, but the easy delamination of GO in water poses a critical challenge for practical solar desalination. Herein, we improve the stability of GO membranes by a self-crosslinking poly (ionic liquid) (PIL) in a mild condition, which crosslinks neighbouring GO nanosheets without blemishing the hydrophilic structure of GO. By further adding carbon nanotubes (CNTs), the sandwiched GO/CNT@PIL (GCP) membrane displays a good stability in pH = 1 or 13 solution even for 270 days. The molecular dynamics simulation results indicate that the generation of water nanofluidics in nanochannels of GO nanosheets remarkably reduces the water evaporation enthalpy in GCP membrane, compared to bulk water. Consequently, the GCP membrane exhibits a high evaporation rate (1.87 kg m-2 h-1) and displays stable evaporation rates for 14 h under 1 kW m-2 irradiation. The GCP membrane additionally works very well when using different water sources (e.g., dye-polluted water) or even strong acidic solution (pH = 1) or basic solution (pH = 13). More importantly, through bundling pluralities of GCP membrane, an efficient solar desalination device is developed to produce drinkable water from seawater. The average daily drinkable water amount in sunny day is 10.1 kg m-2, which meets with the daily drinkable water needs of five adults. The high evaporation rate, long-time durability and good scalability make the GCP membrane an outstanding candidate for practical solar seawater desalination.

     

  • • A robust GO/CNT membrane is obtained by self-crosslinking of poly (ionic liquid). • The membrane bears hydrophilicity and high stability in strong acid/base solution. • Water evaporation enthalpy is remarkably reduced due to water nanofluidics in GO. • The membrane shows high evaporation rate, great flexibility and long-term stability. • The membrane works very well in practical solar desalination to produce freshwater.
    J.H. and Z.D. contributed equally.
  • loading
  • [1]
    Y.-S. Jun, X. Wu, D. Ghim, Q. Jiang, S. Cao, S. Singamaneni, Acc. Chem. Res. 52 (2019) 1215-1225
    [2]
    M. Gao, L. Zhu, C.K. Peh, G.W. Ho, Energy Environ. Sci. 12 (2019) 841-864
    [3]
    P. Tao, G. Ni, C. Song, W. Shang, J. Wu, J. Zhu, G. Chen, T. Deng, Nat. Energy 3 (2018) 1031-1041
    [4]
    Y. Wang, X. Wu, X. Yang, G. Owens, H. Xu, Nano Energy 78 (2020) 105269
    [5]
    Y. Wang, X. Wu, B. Shao, X. Yang, G. Owens, H. Xu, Sci. Bull. 65 (2020) 1380-1388
    [6]
    L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, J. Zhu, Nat. Photonics 10 (2016) 393-398
    [7]
    Y. Li, M. Zhao, Y. Xu, L. Chen, T. Jiang, W. Jiang, S. Yang, Y. Wang, J. Mater. Chem. A 7 (2019) 26769-26775
    [8]
    Z. Tahir, S. Kim, F. Ullah, S. Lee, J.-h. Lee, N.-W. Park, M.-J. Seong, S.-K. Lee, T.-S. Ju, S. Park, J.-S. Bae, J.I. Jang, Y.S. Kim, ACS Appl. Mater. Interfaces 12 (2020) 2490-2496
    [9]
    Y. Kuang, C. Chen, S. He, E.M. Hitz, Y. Wang, W. Gan, R. Mi, L. Hu, Adv. Mater. 31 (2019) 1900498
    [10]
    Q.-Y. Wu, C. Wang, R. Wang, C. Chen, J. Gao, J. Dai, D. Liu, Z. Lin, L. Hu, Adv. Energy Mater. 10 (2020) 1902590
    [11]
    J. Li, X. Zhou, P. Mu, F. Wang, H. Sun, Z. Zhu, J. Zhang, W. Li, A. Li, ACS Appl. Mater. Interfaces 12 (2020) 798-806
    [12]
    X. Zhou, F. Zhao, Y. Guo, B. Rosenberger, G. Yu, Sci. Adv. 5 (2019) eaaw5484
    [13]
    F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L. Qu, G. Yu, Nat. Nanotechnol. 13 (2018) 489-495
    [14]
    Y. Xu, J. Ma, Y. Han, H. Xu, Y. Wang, D. Qi, W. Wang, Chem. Eng. J. 384 (2020) 123379
    [15]
    J. Jia, W. Liang, H. Sun, Z. Zhu, C. Wang, A. Li, Chem. Eng. J. 361 (2019) 999-1006
    [16]
    S. Cao, J. Jiang, Q. Tian, C. Guo, X. Wang, K. Dai, Q. Xu, Green Energy Environ. (2021) https://doi.org/10.1016/j.gee.2020.1012.1012
    [17]
    F. Zhao, Y. Guo, X. Zhou, W. Shi, G. Yu, Nat. Rev. Mater. 5 (2020) 388-401
    [18]
    J. Li, X. Wang, Z. Lin, N. Xu, X. Li, J. Liang, W. Zhao, R. Lin, B. Zhu, G. Liu, L. Zhou, S. Zhu, J. Zhu, Joule 4 (2020) 928-937
    [19]
    Q. Zhang, H. Yang, X. Xiao, H. Wang, L. Yan, Z. Shi, Y. Chen, W. Xu, X. Wang, J. Mater. Chem. A 7 (2019) 14620-14628
    [20]
    H. Liang, Q. Liao, N. Chen, Y. Liang, G. Lv, P. Zhang, B. Lu, L. Qu, Angew. Chem. Int. Ed. 58 (2019) 19041-19046
    [21]
    C. Song, L. Hao, B. Zhang, Z. Dong, Q. Tang, J. Min, Q. Zhao, R. Niu, J. Gong, T. Tang, Sci. China Mater. 63 (2020) 779-793
    [22]
    B. Zhang, C. Song, C. Liu, J. Min, J. Azadmanjiri, Y. Ni, R. Niu, J. Gong, Q. Zhao, T. Tang, J. Mater. Chem. A 7 (2019) 22912-22923
    [23]
    C. Song, B. Zhang, L. Hao, J. Min, N. Liu, R. Niu, J. Gong, T. Tang, Green Energy Environ. (2021) https://doi.org/10.1016/j.gee.2020.1010.1002
    [24]
    X. Wu, Z. Wu, Y. Wang, T. Gao, Q. Li, H. Xu, Adv. Sci. (2021) https://doi.org/10.1002/advs.202002501
    [25]
    L. Dong, J. Yang, M. Chhowalla, K.P. Loh, Chem. Soc. Rev. 46 (2017) 7306-7316
    [26]
    X. Wu, T. Gao, C. Han, J. Xu, G. Owens, H. Xu, Sci. Bull. 64 (2019) 1625-1633
    [27]
    X. Li, B. Zhu, J. Zhu, Carbon 146 (2019) 320-328
    [28]
    X.-Y. Wang, J. Xue, C. Ma, T. He, H. Qian, B. Wang, J. Liu, Y. Lu, J. Mater. Chem. A 7 (2019) 16696-16703
    [29]
    Y. Wang, X. Wu, T. Gao, Y. Lu, X. Yang, G.Y. Chen, G. Owens, H. Xu, Nano Energy 79 (2021) 105477
    [30]
    X. Hu, W. Xu, L. Zhou, Y. Tan, Y. Wang, S. Zhu, J. Zhu, Adv. Mater. 29 (2017) 1604031
    [31]
    Y. Li, T. Gao, Z. Yang, C. Chen, W. Luo, J. Song, E. Hitz, C. Jia, Y. Zhou, B. Liu, B. Yang, L. Hu, Adv. Mater. 29 (2017) 1700981
    [32]
    G. Liu, W. Jin, N. Xu, Chem. Soc. Rev. 44 (2015) 5016-5030
    [33]
    J. Ran, C. Chu, T. Pan, L. Ding, P. Cui, C.-F. Fu, C.-L. Zhang, T. Xu, J. Mater. Chem. A 7 (2019) 8085-8091
    [34]
    J. Yang, D. Gong, G. Li, G. Zeng, Q. Wang, Y. Zhang, G. Liu, P. Wu, E. Vovk, Z. Peng, X. Zhou, Y. Yang, Z. Liu, Y. Sun, Adv. Mater. 30 (2018) 1705775
    [35]
    P. Sun, K. Wang, H. Zhu, Adv. Mater. 28 (2016) 2287-2310
    [36]
    G. Yang, Z. Xie, M. Cran, D. Ng, C.D. Easton, M. Ding, H. Xu, S. Gray, J. Mater. Chem. A 7 (2019) 19682-19690
    [37]
    Y.T. Nam, J. Choi, K.M. Kang, D.W. Kim, H.-T. Jung, ACS Appl. Mater. Interfaces 8 (2016) 27376-27382
    [38]
    M. Zhang, Y. Mao, G. Liu, G. Liu, Y. Fan, W. Jin, Angew. Chem. Int. Ed. 59 (2020) 1689-1695
    [39]
    S. Guo, Y. Nishina, A. Bianco, C. Menard-Moyon, Angew. Chem. Int. Ed. 59 (2020) 1542-1547
    [40]
    K. Goh, W. Jiang, H.E. Karahan, S. Zhai, L. Wei, D. Yu, A.G. Fane, R. Wang, Y. Chen, Adv. Funct. Mater. 25 (2015) 7348-7359
    [41]
    J. Gong, H. Lin, J.W.C. Dunlop, J. Yuan, Adv. Mater. 29 (2017) 1605103
    [42]
    H. Li, B. Zhang, W. Jiang, W. Zhu, M. Zhang, C. Wang, J. Pang, H. Li, Green Energy Environ. 4 (2019) 38-48
    [43]
    Z. Dong, C. Zhang, P. Huawen, J. Gong, H. Wang, Q. Zhao, J. Yuan, Mater. Horiz. 7 (2020) 2683-2689
    [44]
    Z. Dong, C. Zhang, P. Huawen, J. Gong, Q. Zhao, J. Mater. Chem. A 8 (2020) 24493-24500
    [45]
    N. Liu, L. Hao, B. Zhang, R. Niu, J. Gong, T. Tang, Sustainable Energy Fuels 4 (2020) 5522-5532
    [46]
    L. Hao, N. Liu, B. Zhang, R. Niu, J. Gong, T. Tang, J. Taiwan Inst. Chem. Eng. 115 (2020) 71-78
    [47]
    Y. Li, C. Li, S. Li, B. Su, L. Han, B. Mandal, J. Mater. Chem. A 7 (2019) 13315-13330
    [48]
    Q. Wang, Y. Qin, F. Jia, S. Song, Y. Li, Green Energy Environ. (2021) https://doi.org/10.1016/j.gee.2020.1007.1020
    [49]
    Z. Chen, B. Dang, X. Luo, W. Li, J. Li, H. Yu, S. Liu, S. Li, ACS Appl. Mater. Interfaces 11 (2019) 26032-26037
    [50]
    K. Li, T.-H. Chang, Z. Li, H. Yang, F. Fu, T. Li, J.S. Ho, P.-Y. Chen, Adv. Energy Mater. 9 (2019) 1901687
    [51]
    H.-C. Yang, Z. Chen, Y. Xie, J. Wang, J.W. Elam, W. Li, S.B. Darling, Adv. Mater. Interfaces 6 (2019) 1801252
    [52]
    S. Meng, X. Zhao, C.-Y. Tang, P. Yu, R.-Y. Bao, Z.-Y. Liu, M.-B. Yang, W. Yang, J. Mater. Chem. A 8 (2020) 2701-2711
    [53]
    Q. Ma, P. Yin, M. Zhao, Z. Luo, Y. Huang, Q. He, Y. Yu, Z. Liu, Z. Hu, B. Chen, H. Zhang, Adv. Mater. 31 (2019) 1808249
    [54]
    H. Xu, K. Yu, M. Pan, Z. Yao, T. Zhao, Z. Jiang, Green Energy Environ. (2021) https://doi.org/10.1016/j.gee.2020.1010.1010
    [55]
    P. Zhang, J. Li, L. Lv, Y. Zhao, L. Qu, ACS Nano 11 (2017) 5087-5093
    [56]
    Y. Zhao, K. Zhao, J. Yin, J. Yang, J. Xu, Y. Gu, L. Liu, J. Luo, Y. Li, L. Sun, J. Mater. Chem. A 7 (2019) 24311-24319
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (236) PDF downloads(28) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return