Volume 6 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
Ruisong Zhu, Zhigang Lei. COSMO-based models for predicting the gas solubility in polymers. Green Energy&Environment, 2021, 6(3): 311-313. doi: 10.1016/j.gee.2021.03.009
Citation: Ruisong Zhu, Zhigang Lei. COSMO-based models for predicting the gas solubility in polymers. Green Energy&Environment, 2021, 6(3): 311-313. doi: 10.1016/j.gee.2021.03.009

COSMO-based models for predicting the gas solubility in polymers

doi: 10.1016/j.gee.2021.03.009
  • We like to highlight the extension of COSMO-based models (COSMO RS-FV and COSMO SAC-FV) to the prediction of gas solubility in polymers, including polymerized ionic liquids (PILs) for the first time. To verify the applicability of COSMO-based models, the predicted values for gas solubility in both common polymers (CH4/N2 + PEG) and PILs (CO2 + P[MATMA][BF4]/P[VATMA][BF4]) were evaluated based on previous experimental data. It was confirmed that the COSMO-RS (Klamt) model performs better than the COSMO-SAC model for common polymers, whereas the COSMO-RS (ADF-Lei 2018) exhibits the best predictions for PILs. The moderately accurate predictions of COSMO-based models demonstrate the high potential for predicting gas solubility in polymers.

     

    The COSMO-RS (ADF-Lei 2018) model was applied to predict the CO2 solubility in PILs. Based on the structure optimizations of CO2 and PILs, the COSMO-RS (ADF-Lei 2018) model gives relatively accurate predictions in comparison with the experimental data. As a priori method, the COSMO-RS model could predict the phase behavior of polymer solutions including PILs without using any experimental data.

  • loading
  • [1]
    P. B. Staudt, R. L. Simoes, L. Jacques, N. S. M. Cardozo, R. de P. Soares, Fluid Phase Equil.. 472 (2018) 75-84.
    [2]
    E. Elbro, A. Fredenslund, P. Rasmussen, Macromolecules. 23 (1990) 4707-4714.
    [3]
    C. Loschen, A. Klamt, Ind. Eng. Chem. Res. 53 (2014) 11478-11487. doi: 10.1021/ie501669z
    [4]
    J. Han, C. Dai, G. Yu, Z. Lei, Green Energy Environ. 3 (2018) 247-265.
    [5]
    R. Xiong, S. I. Sandler, R. I. Burnett, Ind. Eng. Chem. Res. 53 (2014) 8265-8278. doi: 10.1021/ie404410v
    [6]
    Y. Chen, C. Ma, X. Ji, Z. Yang, X. Lu, Fluid Phase Equil.. 504 (2020) 112336.
    [7]
    M. S. Raja Shahrom, C. D. Wilfred, D. R. MacFarlane, R. Vijayraghavan, F. K. Chong, J. Mol. Liq. 276 (2019) 644-652.
    [8]
    Z. Zhao, H. Dong, X. Zhang, Chin. J. Chem. Eng. 20 (2012) 120-129.
    [9]
    A. Blasig, J. Tang, X. Hu, Y. Shen, M. Radosz, Fluid Phase Equil.. 256 (2007) 75-80.
    [10]
    A. Blasig, J. Tang, X. Hu, S. P. Tan, Y. Shen, M. Radosz, Ind. Eng. Chem. Res. 46 (2007) 5542-5547. doi: 10.1021/ie0616545
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (286) PDF downloads(22) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return