Volume 8 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
Min Wang, Qirong Liu, Guangming Wu, Jianmin Ma, Yongbing Tang. Coral-like and binder-free carbon nanowires for potassium dual-ion batteries with superior rate capability and long-term cycling life. Green Energy&Environment, 2023, 8(2): 548-558. doi: 10.1016/j.gee.2021.03.007
Citation: Min Wang, Qirong Liu, Guangming Wu, Jianmin Ma, Yongbing Tang. Coral-like and binder-free carbon nanowires for potassium dual-ion batteries with superior rate capability and long-term cycling life. Green Energy&Environment, 2023, 8(2): 548-558. doi: 10.1016/j.gee.2021.03.007

Coral-like and binder-free carbon nanowires for potassium dual-ion batteries with superior rate capability and long-term cycling life

doi: 10.1016/j.gee.2021.03.007
  • Owing to the advantages of high operating voltage, environmental benignity, and low cost, potassium-based dual-ion batteries (KDIBs) have been considered as a potential candidate for large-scale energy storage. However, KDIBs generally suffer from poor cycling performance and unsatisfied capacity, and inactive components of conductive agents, binders, and current collector further lower their overall capacity. Herein, we prepare coral-like carbon nanowires (CCNWs) doped with nitrogen as a binder-free anode material for K+-ion storage, in which the unique coral-like porous nanostructure and amorphous/short-range-ordered composite feature are conducive to enhancing the structural stability, to facilitating the ion transfer and to boosting the full utilization of active sites during potassiation/de-potassiation process. As a result, the CCNW anode possesses a hybrid K+-storage mechanism of diffusive behavior and capacitive adsorption, and stably delivers a high capacity of 276 mAh g-1 at 50 mA g-1, good rate capability up to 2 A g-1, and long-term cycling stability with 93% capacity retention after 2000 cycles at 1 A g-1. Further, assembling this CCNW anode with an environmentally benign expanded graphite (EG) cathode yields a proof-of-concept KDIB, which shows a high specific capacity of 134.4 mAh g-1 at 100 mA g-1, excellent rate capability of 106.5 mAh g-1 at 1 A g-1, and long-term cycling stability over 1000 cycles with negligible capacity loss. This study provides a feasible approach to developing high-performance anodes for potassium-based energy storage devices.

     

  • • A 3D nanoporous and locally ordered composite carbon nanowire anode (CCNW) was designed for ultra-stable K+-ion storage. • CCNW anode delivered stable capacity and fast ionic transfer kinetics, and corresponding mechanism was deeply deciphered. • A proof-of-concept K-based dual-ion battery with CCNW anode delivered excellent stability and superior specific capacity.
  • loading
  • [1]
    T.Y. Song, W.J. Yao, P. Kiadkhunthod, Y.P. Zheng, N.Z. Wu, X.L. Zhou, S. Tunmee, S. Sattayaporn, Y.B. Tang, Angew. Chem. Int. Ed. 59 (2020) 740-745.
    [2]
    Q. Liu, H. Wang, C. Jiang, Y. Tang, Energy Storage Mater. 23 (2019) 566-586.
    [3]
    L. Fan, Z. Shi, Q. Ren, L. Yan, F. Zhang, L. Fan, Green Energy Environ. (2020), DOI: 10.1016/j.gee.2020.06.005.
    [4]
    D. Chen, H. Tan, X. Rui, Q. Zhang, Y. Feng, H. Geng, C. Li, S. Huang, Y. Yu, InfoMat 1 (2019) 251-259.
    [5]
    H. Usui, Y. Domi, R. Yamagami, H. Sakaguchi, Green Energy Environ. 4 (2019) 121-126.
    [6]
    B. Ji, H. He, W. Yao, Y. Tang, Adv. Mater. 33 (2020) 2005501.
    [7]
    Z. Lin, Q. Xia, W. Wang, W. Li, S. Chou, InfoMat 1 (2019) 376-389.
    [8]
    C. L. Zhao, Y. X. Lu, L. Q. Chen, Y. S. Hu, InfoMat 2 (2020) 126-138.
    [9]
    X. Zhu, X. Jiang, X. Liu, L. Xiao, Y. Cao, Green Energy Environ. 2 (2017) 310-315.
    [10]
    Y. Wang, L. Zhang, F. Zhang, X. Ding, K. Shin, Y. Tang, J. Energy Chem. 58 (2021) 602-609.
    [11]
    Y. Zhao, Y. Zhu, X. Zhang, InfoMat 2 (2020) 237-260.
    [12]
    C. Yan, C. Lv, L. Wang, W. Cui, L. Zhang, K. N. Dinh, H. Tan, C. Wu, T. Wu, Y. Ren, J. Chen, Z. Liu, M. Srinivasan, X. Rui, Q. Yan, G. Yu, J. Am. Chem. Soc. 42 (2020) 1 15295-15304.
    [13]
    B. Ji, W. Yao, Y. Zheng, P. Kidkhunthod, X. Zhou, S. Tunmee, S. Sattayaporn, H.-M. Cheng, H. He, Y. Tang, Nat. Commun. 11 (2020) 1225.
    [14]
    X. Zhou, Q. Liu, C. Jiang, B. Ji, X. Ji, Y. Tang, H.M. Cheng, Angew. Chem. Int. Ed. 59 (2020) 3802-3832.
    [15]
    Y.H. Zhu, Y.B. Yin, X. Yang, T. Sun, S. Wang, Y.S. Jiang, J.M. Yan, X.B. Zhang, Angew. Chem. Int. Ed. 56 (2017) 7881-7885.
    [16]
    Q. Pan, D. Gong, Y. Tang, Energy Storage Mater. 31 (2020) 328-343.
    [17]
    J. Zhou, Y. Liu, S. Zhang, T. Zhou, Z. Guo, InfoMat 2 (2020) 437-465.
    [18]
    W. Wang, B. Ji, W. Yao, X. Zhang, Y. Zheng, X. Zhou, P. Kidkhunthod, H. He, Y. Tang, Sci. China Mater. (2020), DOI: 10.1007/s40843-020-1512-0.
    [19]
    X. Zhang, Z. Wei, K. N. Dinh, N. Chen, G. Chen, F. Du, Q. Yan, Small 16 (2020) 2002700.
    [20]
    D. Yang, C. Liu, X. Rui, Q. Yan, Nanoscale 11 (2019) 15402-15417.
    [21]
    N. Li, F. Zhang, Y.B. Tang, J. Mater. Chem. A 6 (2018) 17889-17895.
    [22]
    K.V. Kraychyk, P. Bhauriyal, L. Piveteau, C.P. Guntlin, B. Pathak, M.V. Kovalenko, Nat. Commun. 9 (2018) 4469.
    [23]
    M. Zhang, X. Song, X. Ou, Y. Tang, Energy Storage Mater. 16 (2019) 65-84.
    [24]
    X. Li, X. Ou, Y. Tang, Adv. Energy Mater. 10 (2020) 2002567.
    [25]
    K. Yang, Q. Liu, Y. Zheng, H. Yin, S. Zhang, Y. Tang, Angew. Chem. Int. Ed. 60 (2021) 6326-6332.
    [26]
    Y. Li, M. Chen, B. Liu, Y. Zhang, X. Liang, X. Xia, Adv. Energy Mater. 10 (2020) 2000927.
    [27]
    Y. Shen, S. Deng, P. Liu, Y. Zhang, Y. Li, X. Tong, H. Shen, Q. Liu, G. Pan, L. Zhang, X. Wang, X. Xia, J. Tu, Small 16 (2020) 2004072.
    [28]
    M. Liu, L. Xing, K. Xu, H. Zhou, J. Lan, C. Wang, W. Li, Energy Storage Mater. 26 (2020) 32-39.
    [29]
    Y. Liu, X. Hu, G. Zhong, J. Chen, H. Zhan, Z. Wen, J. Mater. Chem. A 7 (2019) 24271-24280.
    [30]
    Y. Xiao, D. Su, X. Wang, S. Wu, L. Zhou, Y. Shi, S. Fang, H.-M. Cheng, F. Li, Adv. Energy Mater. 8 (2018) 1800930.
    [31]
    K. Chen, G. Li, Y. Wang, W. Chen, L. Mi, Green Energy Environ. 5 (2020) 50-58.
    [32]
    Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao, M. Wu, Y. Lei, Nat. Commun. 9 (2018) 1720.
    [33]
    Z. Tai, Y. Liu, Q. Zhang, T. Zhou, Z. Guo, H.K. Liu, S.X. Dou, Green Energy Environ. 2 (2017) 278-284.
    [34]
    L. Fan, R.F. Ma, Q.F. Zhang, X.X. Jia, B.G. Lu, Angew. Chem. Int. Ed. 58 (2019) 10500-10505.
    [35]
    M. Zhang, M. Shoaib, H. Fei, T. Wang, J. Zhong, L. Fan, L. Wang, H. Luo, S. Tan, Y. Wang, J. Zhu, J. Hu, B. Lu, Adv. Energy Mater. 9 (2019) 1901663.
    [36]
    Q. Zhang, J. Mao, W.K. Pang, T. Zheng, V. Sencadas, Y. Chen, Y. Liu, Z. Guo, Adv. Energy Mater. 8 (2018) 1703288.
    [37]
    W. Zhang, J. Ming, W. Zhao, X. Dong, M.N. Hedhili, P.M.F.J. Costa, H.N. Alshareef, Adv. Funct. Mater. 29 (2019) 1903641.
    [38]
    J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi, J. Feng, S. Xiong, Adv. Mater. 30 (2018) 1700104.
    [39]
    X.Q. Chang, X.L. Zhou, X.W. Ou, C.S. Lee, J.W. Zhou, Y.B. Tang, Adv. Energy Mater. 9 (2019) 1902672.
    [40]
    W.C. Zhang, Y.J. Liu, Z.P. Guo, Sci. Adv. 5 (2019) eaav7412.
    [41]
    Chen Hu, Kun Ma, Yanjie Hu, Aiping Chen, Petr Saha, Hao Jiang, Chunzhong Li, Green Energy Environ. (2020) DOI: 10.1016/j.gee.2020.02.001.
    [42]
    X. Hu, G. Zhong, J. Li, Y. Liu, J. Yuan, J. Chen, H. Zhan, Z. Wen, Energy Environ. Sci. 13 (2020) 2431-2440.
    [43]
    L.-F. Chen, Y. Lu, L. Yu, X.W. Lou, Energy Environ. Sci. 10 (2017) 1777-1783.
    [44]
    A. Li, X. Zhang, Z. Xie, Z. Chang, Z. Zhou, X.-H. Bu, Inorg. Chem. 57 (2018) 14476-14479.
    [45]
    W.X. Yang, J.H. Zhou, S. Wang, W.Y. Zhang, Z.C. Wang, F. Lv, K. Wang, Q. Sun, S.J. Guo, Energy Environ. Sci. 12 (2019) 1605-1612.
    [46]
    J. Tan, Y. Han, L. He, Y. Dong, X. Xu, D. Liu, H. Yan, Q. Yu, C. Huang, L. Mai, J. Mater. Chem. A 5 (2017) 23620-23627.
    [47]
    H.L. Jiang, B. Liu, Y.Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F.Q. Zong, Q. Xu, J. Am. Chem. Soc. 133 (2011) 11854-11857.
    [48]
    A. Aijaz, N. Fujiwara, Q. Xu, J. Am. Chem. Soc. 136 (2014) 6790-6793.
    [49]
    H. Zhang, C. Luo, H. He, H.-H. Wu, L. Zhang, Q. Zhang, H. Wang, M.-S. Wang, Nanoscale Horiz. 5 (2020) 895.
    [50]
    J. Du, S. Gao, P. Shi, J. Fan, Q.J. Xu, Y.L. Min, J. Power Sources 451 (2020) 227727.
    [51]
    C. Ma, J. Gong, S. Zhao, X. Liu, X. Mu, Y. Wang, X. Chen, T. Tang, Green Energy Environ. (2020) DOI: 10.1016/j.gee.2020.12.004.
    [52]
    Y. Zhang, L. Yang, Y. Tian, L. Li, J. Li, T. Qiu, G. Zou, H. Hou, X. Ji, Mater. Chem. Phys. 229 (2019) 303-309.
    [53]
    X. Zhao, P. Xiong, J. Meng, Y. Liang, J. Wang, Y. Xu, J. Mater. Chem. A 5 (2017) 19237-19244.
    [54]
    Z. Ju, S. Zhang, Z. Xing, Q. Zhuang, Y. Qiang, Y. Qian, ACS Appl. Mater. Interfaces 8 (2016) 20682-20690.
    [55]
    G. Zhang, X. Ou, C. Cui, J. Ma, J. Yang, Y. Tang, Adv. Funct. Mater. 29 (2018) 1806722.
    [56]
    H.Z. Zhang, Q.Y. Liu, Y.B. Fang, C.L. Teng, X.Q. Liu, P.P. Fang, Y.X. Tong, X.H. Lu, Adv. Mater. 31 (2019) 1904948.
    [57]
    B.J. Yang, J.T. Chen, L.Y. Liu, P.J. Ma, B. Liu, J.W. Lang, Y. Tang, X.B. Yan, Energy Storage Mater. 23 (2019) 522-529.
    [58]
    J. Ruan, Y. Zhao, S. Luo, T. Yuan, J. Yang, D. Sun, S. Zheng, Energy Storage Mater. 23 (2019) 46-54.
    [59]
    L. Peng, C.-T. Hung, S. Wang, X. Zhang, X. Zhu, Z. Zhao, C. Wang, Y. Tang, W. Li, D. Zhao, J. Am. Chem. Soc. 141 (2019) 7073-7080.
    [60]
    X. Miao, D. Sun, X. Zhou, Z. Lei, Chem. Eng. J. 364 (2019) 208-216.
    [61]
    D. Li, X. Ren, Q. Ai, Q. Sun, L. Zhu, Y. Liu, Z. Liang, R. Peng, P. Si, J. Lou, J. Feng, L. Ci, Adv. Energy Mater. 8 (2018) 1802386.
    [62]
    C. Chen, Z. Wang, B. Zhang, L. Miao, J. Cai, L. Peng, Y. Huang, J. Jiang, Y. Huang, L. Zhang, J. Xie, Energy Storage Mater. 8 (2017) 161-168.
    [63]
    J. Ruan, F. Mo, Z. Chen, M. Liu, S. Zheng, R. Wu, F. Fang, Y. Song, D. Sun, Adv. Energy Mater. 10 (2020) 1904045.
    [64]
    S. Wang, L. Xia, L. Yu, L. Zhang, H. Wang, X.W. Lou, Adv. Energy Mater. 6 (2016) 1502217.
    [65]
    M. Chen, W. Wang, X. Liang, S. Gong, J. Liu, Q. Wang, S. Guo, H. Yang, Adv. Energy Mater. 8 (2018) 1800171.
    [66]
    J. Lu, C. Wang, H. Yu, S. Gong, G. Xia, P. Jiang, P. Xu, K. Yang, Q. Chen, Adv. Funct. Mater. 29 (2019) 1906126.
    [67]
    W. Yang, J. Zhou, S. Wang, Z. Wang, F. Lv, W. Zhang, W. Zhang, Q. Sun, S. Guo, ACS Energy Lett. 5 (2020) 1653-1661.
    [68]
    G. Wang, X. Xiong, D. Xie, Z. Lin, J. Zheng, F. Zheng, Y. Li, Y. Liu, C. Yang, M. Liu, J. Mater. Chem. A 6 (2018) 24317-24323.
    [69]
    Y. Xie, Y. Chen, L. Liu, P. Tao, M. Fan, N. Xu, X. Shen, C. Yan, Adv. Mater. 29 (2017) 1702268.
    [70]
    G. Wang, M. Shao, H. Ding, Y. Qi, J. Lian, S. Li, J. Qiu, H. Li, F. Huo, Angew. Chem. Int. Ed. 58 (2019) 13584-13589.
    [71]
    Y. Wang, Z. Wang, Y. Chen, H. Zhang, M. Yousaf, H. Wu, M. Zou, A. Cao, R.P.S. Han, Adv. Mater. 30 (2018) 1802074.
    [72]
    S. Mu, Q.R. Liu, K. Pinit, X. Zhou, W. Wang, Y.B. Tang, Natl. Sci. Rev. (2020) DOI: 10.1093/nsr/nwaa178.
    [73]
    X. Lei, Y.P. Zheng, F. Zhang, Y. Wang, Y.B. Tang, Energy Storage Mater. 30 (2020) 34-41.
    [74]
    A. Yu, D. Gong, M. Zhang, Y. Tang, Chem. Eng. J. 401 (2020) 125834.
    [75]
    C. Jiang, L. Xiang, S. Miao, L. Shi, D. Xie, J. Yan, Z. Zheng, X. Zhang, Y.B. Tang, Adv. Mater. 32 (2020) 1908470
    [76]
    S. Peng, X. Zhou, S. Tunmee, Z. Li, P. Kidkhunthod, M. Peng, W. Wang, H. Saitoh, Y.B. Tang, ACS Sustainable Chem. Eng. 9 (2021) 3710 -3717.
    [77]
    S. Wang, X. Xiao, C. Fu, J. Tu, Y. Tan, S. Jiao, J. Mater. Chem. A 6 (2018) 4313-4323.
    [78]
    L. Fan, Q. Liu, S. Chen, K. Lin, Z. Xu, B. Lu, Small 13 (2017) 1701011.
    [79]
    J.J. Zhu, Y.L. Li, B.J. Yang, L.Y. Liu, J.S. Li, X.B. Yan, D.Y. He, Small 14 (2018) 1801836.
    [80]
    X. Ding, F. Zhang, B. Ji, Y. Liu, J. Li, C.-S. Lee, Y. Tang, ACS Appl. Mater. Interfaces 10 (2018) 42294-42300.
    [81]
    B. Ji, F. Zhang, N. Wu, Y. Tang, Adv. Energy Mater. 7 (2017) 1700920.
    [82]
    K. Beltrop, S. Beuker, A. Heckmann, M. Winter, T. Placke, Energy Environ. Sci. 10 (2017) 2090-2094.
    [83]
    L. Fan, K.R. Lin, J. Wang, R.F. Ma, B.G. Lu, Adv. Mater. 30 (2018) 1800804.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (121) PDF downloads(19) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return