Volume 7 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Tehua Wang, Xian-Zhu Fu, Shuangyin Wang. Etching oxide overlayers of NiFe phosphide to facilitate surface reconstruction for oxygen evolution reaction. Green Energy&Environment, 2022, 7(3): 365-371. doi: 10.1016/j.gee.2021.03.005
Citation: Tehua Wang, Xian-Zhu Fu, Shuangyin Wang. Etching oxide overlayers of NiFe phosphide to facilitate surface reconstruction for oxygen evolution reaction. Green Energy&Environment, 2022, 7(3): 365-371. doi: 10.1016/j.gee.2021.03.005

Etching oxide overlayers of NiFe phosphide to facilitate surface reconstruction for oxygen evolution reaction

doi: 10.1016/j.gee.2021.03.005
  • Transition-metal phosphides have been of concern as efficient electrocatalysts for oxygen evolution reaction (OER) due to its high conductivity and earth-abundance reserves. However, oxide overlayers formed on their surface by spontaneously atmospheric oxidation are usually neglected, thus confusing the establishment of structure-performance relationship. Herein, we successfully etched the oxide overlayers of NiFe phosphide (NiFeP) by a dielectric barrier discharge (DBD) plasma technique, aiming to reveal the influence of the oxide overlayers on its electrocatalytic performance for OER. It is found that etching the oxide overlayers can accelerate the surface reconstruction process of NiFeP and facilitate the formation of metal hydroxides, which are key intermediate phases for OER. Consequently, the etched NiFeP-DBD material shows remarkably enhanced OER activity with an overpotential of 265 mV at a current density of 10 mA cm−2. The finding of this work probably brings a significant impact to understand the structure-performance relationship of metal phosphide in electrooxidation reaction.

     

  • • DBD-plasma is an efficient technology to etch the oxide overlayers of metal phosphides. • Etching the oxide overlayers can accelerate the surface reconstruction of NiFeP. • The etched NiFeP-DBD material shows remarkably enhanced OER activity.
  • loading
  • [1]
    H. Zhang, J. Wang, Q. Cheng, P. Saha, H. Jiang, Green Energy Environ. 5 (2020) 492-498.
    [2]
    M. Yuan, Y. Sun, Y. Yang, J. Zhang, S. Dipazir, T. Zhao, S. Li, Y. Xie, H. Zhao, Z. Liu, G. Zhang, Green Energy Environ. (2020) https://doi.org/10.1016/j.gee.2020.07.012.
    [3]
    H. Dotan, A. Landman, S.W. Sheehan, K.D. Malviya, G.E. Shter, D.A. Grave, Z. Arzi, N. Yehudai, M. Halabi, N. Gal, N. Hadari, C. Cohen, A. Rothschild, G.S. Grader, Nat. Energ. 4 (2019) 786-795.
    [4]
    J. Shan, C. Guo, Y. Zhu, S. Chen, L. Song, M. Jaroniec, Y. Zheng, S.-Z. Qiao, Inside Chem. 5 (2019) 445-459.
    [5]
    C.W. Song, H. Suh, J. Bak, H.B. Bae, S.-Y. Chung, Inside Chem. 5 (2019) 3243-3259.
    [6]
    X. Li, Q. Jiang, S. Dou, L. Deng, J. Huo, S. Wang, J. Mater. Chem. 4 (2016) 15836-15840.
    [7]
    J. Wang, L. Gan, W. Zhang, Y. Peng, H. Yu, Q. Yan, X. Xia, X. Wang, Sci. Adv. 4 (2018) eaap7970.
    [8]
    H. Zhang, Y. Liu, T. Chen, J. Zhang, J. Zhang, X.W. Lou, Adv. Mater. 31 (2019) 1904548.
    [9]
    G. Liu, P. Li, G. Zhao, X. Wang, J. Kong, H. Liu, H. Zhang, K. Chang, X. Meng, T. Kako, J. Ye, J. Am. Chem. Soc. 138 (2016) 9128-9136.
    [10]
    P. He, X.-Y. Yu, X.W. Lou, Angew. Chem. Int. Ed. 56 (2017) 3897-3900.
    [11]
    C. Liao, B. Yang, N. Zhang, M. Liu, G. Chen, X. Jiang, G. Chen, J. Yang, X. Liu, T.-S. Chan, Y.-J. Lu, R. Ma, W. Zhou, Adv. Funct. Mater. 29 (2019) 1904020.
    [12]
    W.Q. Zaman, W. Sun, M. Tariq, Z. Zhou, U. Farooq, Z. Abbas, L. Cao, J. Yang, Appl. Catal. B Environ. 244 (2019) 295-302.
    [13]
    G. Chen, Y. Zhu, H.M. Chen, Z. Hu, S.-F. Hung, N. Ma, J. Dai, H.-J. Lin, C.-T. Chen, W. Zhou, Z. Shao, Adv. Mater. 31 (2019) 1900883.
    [14]
    Q. Ma, B. Li, F. Huang, Q. Pang, Y. Chen, J.Z. Zhang, Electrochim. Acta 317 (2019) 684-693.
    [15]
    W.-D. Zhang, X. Yan, T. Li, Y. Liu, Q.-T. Fu, Z.-G. Gu, Chem. Commun. 55 (2019) 5467-5470.
    [16]
    R. Liu, Y. Wang, D. Liu, Y. Zou, S. Wang, Adv. Mater. 29 (2017) 1701546.
    [17]
    J. Zou, G. Peleckis, C.-Y. Lee, G.G. Wallace, Chem. Commun. 55 (2019) 8808-8811.
    [18]
    M. Gorlin, P. Chernev, P. Paciok, C.-W. Tai, J. Ferreira De Araujo, T. Reier, M. Heggen, R. Dunin-Borkowski, P. Strasser, H. Dau, Chem. Commun. 55 (2019) 818-821.
    [19]
    Q. Yan, P. Yan, T. Wei, G. Wang, K. Cheng, K. Ye, K. Zhu, J. Yan, D. Cao, Y. Li, J. Mater. Chem. 7 (2019) 2831-2837.
    [20]
    W. Li, D. Xiong, X. Gao, L. Liu, Chem. Commun. 55 (2019) 8744-8763.
    [21]
    Z. Kou, T. Wang, Q. Gu, M. Xiong, L. Zheng, X. Li, Z. Pan, H. Chen, F. Verpoort, A.K. Cheetham, S. Mu, J. Wang, Adv. Energ. Mater. 9 (2019) 1803768.
    [22]
    X. Ma, K. Li, X. Zhang, B. Wei, H. Yang, L. Liu, M. Zhang, X. Zhang, Y. Chen, J. Mater. Chem. 7 (2019) 14904-14915.
    [23]
    S. Dutta, A. Indra, Y. Feng, H. Han, T. Song, Appl. Catal. B Environ. 241 (2019) 521-527.
    [24]
    Y. Zhao, B. Jin, A. Vasileff, Y. Jiao, S.-Z. Qiao, J. Mater. Chem. 7 (2019) 8117-8121.
    [25]
    A. Dutta, A.K. Samantara, S.K. Dutta, B.K. Jena, N. Pradhan, ACS Energy Lett. 1 (2016) 169-174.
    [26]
    F. Hu, S. Zhu, S. Chen, Y. Li, L. Ma, T. Wu, Y. Zhang, C. Wang, C. Liu, X. Yang, L. Song, X. Yang, Y. Xiong, Adv. Mater. 29 (2017) 1606570.
    [27]
    L. Zhang, X. Wang, A. Li, X. Zheng, L. Peng, J. Huang, Z. Deng, H. Chen, Z. Wei, J. Mater. Chem. 7 (2019) 17529-17535.
    [28]
    A. Sivanantham, P. Ganesan, A. Vinu, S. Shanmugam, ACS Catal. 10 (2020) 463-493.
    [29]
    G.B. Darband, M. Aliofkhazraei, S. Hyun, A.S. Rouhaghdam, S. Shanmugam, J. Power Sources 429 (2019) 156-167.
    [30]
    S. Shanmugam, A. Sivanantham, M. Matsunaga, U. Simon, T. Osaka, Electrochim. Acta 297 (2019) 749-754.
    [31]
    H. Jiang, Q. He, X. Li, X. Su, Y. Zhang, S. Chen, S. Zhang, G. Zhang, J. Jiang, Y. Luo, P.M. Ajayan, L. Song, Adv. Mater. 31 (2019) 1805127.
    [32]
    J. Huang, Y. Li, Y. Zhang, G. Rao, C. Wu, Y. Hu, X. Wang, R. Lu, Y. Li, J. Xiong, Angew. Chem. Int. Ed. 58 (2019) 17458-17464.
    [33]
    L. Tao, Y. Shi, Y.-C. Huang, R. Chen, Y. Zhang, J. Huo, Y. Zou, G. Yu, J. Luo, C.-L. Dong, S. Wang, Nanomater. Energy 53 (2018) 604-612.
    [34]
    T. Wang, X. Guan, H. Lu, Z. Liu, M. Ji, Appl. Surf. Sci. 398 (2017) 1-8.
    [35]
    S. Fu, C. Zhu, J. Song, M.H. Engelhard, X. Li, D. Du, Y. Lin, ACS Energy Lett. 1 (2016) 792-796.
    [36]
    J. Yu, Q. Li, Y. Li, C.-Y. Xu, L. Zhen, V.P. Dravid, J. Wu, Adv. Funct. Mater. 26 (2016) 7644-7651.
    [37]
    H. Zhang, W. Zhou, J. Dong, X.F. Lu, X.W. Lou, Energy Environ. Sci. 12 (2019) 3348-3355.
    [38]
    Y.L. Lo, B.J. Hwang, Langmuir 14 (1998) 944-950.
    [39]
    S. Dou, C.-L. Dong, Z. Hu, Y.-C. Huang, J.-L. Chen, L. Tao, D. Yan, D. Chen, S. Shen, S. Chou, S. Wang, Adv. Funct. Mater. 27 (2017) 1702546
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (350) PDF downloads(53) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return