Volume 8 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Jingsha Li, Shijie Yi, Ranjusha Rajagopalan, Zejie Zhang, Yougen Tang, Haiyan Wang. Micropores regulating enables advanced carbon sphere catalyst for Zn-air batteries. Green Energy&Environment, 2023, 8(1): 308-317. doi: 10.1016/j.gee.2021.03.003
Citation: Jingsha Li, Shijie Yi, Ranjusha Rajagopalan, Zejie Zhang, Yougen Tang, Haiyan Wang. Micropores regulating enables advanced carbon sphere catalyst for Zn-air batteries. Green Energy&Environment, 2023, 8(1): 308-317. doi: 10.1016/j.gee.2021.03.003

Micropores regulating enables advanced carbon sphere catalyst for Zn-air batteries

doi: 10.1016/j.gee.2021.03.003
  • Energy conversion technologies like fuel cells and metal-air batteries require oxygen reduction reaction (ORR) electrocatalysts with low cost and high catalytic activity. Herein, N-doped carbon spheres (N-CS) with rich micropore structure have been synthesized by a facile two-step method, which includes the polymerization of pyrrole and formaldehyde and followed by a facile pyrolysis process. During the preparation, zinc chloride (ZnCl2) was utilized as a catalyst to promote polymerization and provide a hypersaline environment. In addition, the morphology, defect content and activity area of the resultant N-CS catalysts could be regulated by controlling the content of ZnCl2. The optimum N-CS-1 catalyst demonstrated much better catalytic activity and durability towards ORR in alkaline conditions than commercial 20 wt% Pt/C catalysts, of which the half-wave potential reached 0.844 V vs. RHE. When applied in the Zn-air batteries as cathode catalysts, N-CS-1 showed a maximum power density of 175 mW cm-2 and long-term discharging stability of over 150 h at 10 mA cm-2, which outperformed 20 wt% Pt/C. The excellent performance could be due to its ultrahigh specific surface area of 1757 m2 g-1 and rich micropore channels structure. Meanwhile, this work provides an efficient method to synthesize an ultrahigh surface porous carbon material, especially for catalyst application.

     

  • • The N-doped carbon spheres (N-CS) with abundant micropores and defects were prepared by a facile polymerization of pyrrole and formaldehyde and following pyrolysis. • Hypersaline environment of ZnCl2 was found to change the morphology, porosity structure and defects of N-CS and further improve its ORR performance. • N-CS exhibited excellent performance towards ORR in Zn-air battery, due to its ultrahigh specific surface area and rich micropore structure..
    Jingsha Li and Shijie Yi contributed equally.
  • loading
  • [1]
    Y. Liu, Q. Sun, W. Li, K.R. Adair, J. Li, X. Sun, Green Energy Environ. 2 (2017) 246-277
    [2]
    X. Zhang, X.-G. Wang, Z. Xie, Z. Zhou, Green Energy Environ. 1 (2016) 4-17
    [3]
    L. Chong, J. Wen, J. Kubal, F.G. Sen, J. Zou, J. Greeley, M. Chan, H. Barkholtz, W. Ding, D.-J. Liu, Science 362 (2018) 1276
    [4]
    J. Li, C. Guo, C.M. Li, Chemsuschem 13 (2020) 1047-1070
    [5]
    Y. Tong, J. Liang, H.K. Liu, S.X. Dou, Energy Storage Mater. 20 (2019) 176-187
    [6]
    M. Dong, X. Liu, L. Jiang, Z. Zhu, Y. Shu, S. Chen, Y. Dou, P. Liu, H. Yin, H. Zhao, Green Energy Environ. 2020, DOI: 10.1016/j.gee.2020.06.022
    [7]
    X. Li, N. Xu, H. Li, M. Wang, L. Zhang, J. Qiao, Green Energy Environ. 2 (2017) 316-328
    [8]
    D. Liu, Y. Tong, X. Yan, J. Liang, S.X. Dou, Batteries Supercaps. 2 (2019) 743-765
    [9]
    Y. Nie, L. Li, Z. Wei, Chem. Soc. Rev. 44 (2015) 2168-2201
    [10]
    S. Yi, H. Jiang, X. Bao, S. Zou, J. Liao, Z. Zhang, J. Electroanal. Chem. 848 (2019) 113279
    [11]
    H. Zhang, H. Qiao, H. Wang, N. Zhou, J. Chen, Y. Tang, J. Li, C. Huang, Nanoscale 6 (2014) 10235-10242
    [12]
    S. Yi, X. Qin, C. Liang, J. Li, R. Rajagopalan, Z. Zhang, J. Song, Y. Tang, F. Cheng, H. Wang, M. Shao, Appl. Catal. B: Environ. 264 (2020) 118537
    [13]
    K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 323 (2009) 760
    [14]
    D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Science 351 (2016) 361
    [15]
    L.-P. Wang, J. Tian, J.-S. Li, X.-G. Zeng, Z.-G. Peng, X.-B. Huang, Y.-G. Tang, H.-Y. Wang, J. Cent. South Univ. 26 (2019) 1458-1468
    [16]
    Y. Han, Y.-G. Wang, W. Chen, R. Xu, L. Zheng, J. Zhang, J. Luo, R.-A. Shen, Y. Zhu, W.-C. Cheong, C. Chen, Q. Peng, D. Wang, Y. Li, J. Am. Chem. Soc. 139 (2017) 17269-17272
    [17]
    Z. Huang, H. Pan, W. Yang, H. Zhou, N. Gao, C. Fu, S. Li, H. Li, Y. Kuang, ACS Nano 12 (2018) 208-216
    [18]
    R. Zhao, W. Xia, C. Lin, J. Sun, A. Mahmood, Q. Wang, B. Qiu, H. Tabassum, R. Zou, Carbon 114 (2017) 284-290
    [19]
    J. Li, J. Chen, H. Wan, J. Xiao, Y. Tang, M. Liu, H. Wang, Appl. Catal. B: Environ. 242 (2019) 209-217
    [20]
    D. Liu, L. Fu, X. Huang, K. Liu, J. Li, H. Xie, H. Wang, Y. Tang, J. Electrochem. Soc. 165 (2018) F662-F670
    [21]
    J. Li, L. Fu, J. Luan, H. Xie, F. Cheng, Y. Tang, H. Wang, J. Electrochem. Soc. 165 (2018) A3766-A3772
    [22]
    J. Li, J. Chen, H. Wang, Y. Ren, K. Liu, Y. Tang, M. Shao, Energy Storage Mater. 8 (2017) 49-58
    [23]
    H. Jiang, Y. Liu, W. Li, J. Li, Small 14 (2018) 1703739
    [24]
    F.-Y. Zeng, Z.-Y. Sui, S. Liu, H.-P. Liang, H.-H. Zhan, B.-H. Han, Mater. Today Commun. 16 (2018) 1-7
    [25]
    Z.-L. Yu, G.-C. Li, N. Fechler, N. Yang, Z.-Y. Ma, X. Wang, M. Antonietti, S.-H. Yu, Angew. Chem. Int. Ed. 55 (2016) 14623-14627
    [26]
    D. Saurel, B. Orayech, B. Xiao, D. Carriazo, X. Li, T. Rojo, Adv. Energy Mater. 8 (2018) 1703268
    [27]
    J. Song, Y. Ren, J. Li, X. Huang, F. Cheng, Y. Tang, H. Wang, Carbon 138 (2018) 300-308
    [28]
    S.S. Shinde, C.H. Lee, J.-Y. Yu, D.-H. Kim, S.U. Lee, J.-H. Lee, ACS Nano 12 (2018) 596-608
    [29]
    H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu, L. Wang, W. Li, Z. Chen, X. Ji, J. Li, Energy Environ. Science 12 (2019) 322-333
    [30]
    J. Li, S. Chen, N. Yang, M. Deng, S. Ibraheem, J. Deng, J. Li, L. Li, Z. Wei, Angew. Chem. Int. Ed. 58 (2019) 7035-7039
    [31]
    D. Liu, B. Wang, H. Li, S. Huang, M. Liu, J. Wang, Q. Wang, J. Zhang, Y. Zhao, Nano Energy 58 (2019) 277-283
    [32]
    J. Li, T. Hu, C. Wang, C. Guo, Green Energy & Environment (2020)
    [33]
    L. Yan, J. Yu, J. Houston, N. Flores, H. Luo, Green Energy & Environment 2 (2017) 84-99
    [34]
    H. Li, Y. Chen, Q. Jin, W. Xiang, B. Zhong, X. Guo, B. Wang, Green Energy & Environment 2020, DOI: 10.1016/j.gee.2020.11.009
    [35]
    T. Wang, Z.-X. Chen, Y.-G. Chen, L.-J. Yang, X.-D. Yang, J.-Y. Ye, H.-P. Xia, Z.-Y. Zhou, S.-G. Sun, ACS Energy Lett. 3 (2018) 986-991
    [36]
    J. Zhang, Y. Sun, J. Zhu, Z. Kou, P. Hu, L. Liu, S. Li, S. Mu, Y. Huang, Nano Energy 52 (2018) 307-314
    [37]
    Y. Hao, Y. Xu, W. Liu, X. Sun, Mater. Horiz. 5 (2018) 108-115
    [38]
    Q. Wang, Y. Ji, Y. Lei, Y. Wang, Y. Wang, Y. Li, S. Wang, ACS Energy Lett. 3 (2018) 1183-1191
    [39]
    Y.-C. Wang, Y.-J. Lai, L.-Y. Wan, H. Yang, J. Dong, L. Huang, C. Chen, M. Rauf, Z.-Y. Zhou, S.-G. Sun, ACS Energy Lett. 3 (2018) 1396-1401
    [40]
    W. Lei, Y.-P. Deng, G. Li, Z.P. Cano, X. Wang, D. Luo, Y. Liu, D. Wang, Z. Chen, ACS Catal. 8 (2018) 2464-2472
    [41]
    T. Sun, J. Wang, C. Qiu, X. Ling, B. Tian, W. Chen, C. Su, Adv. Sci. 5 (2018) 1800036
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (218) PDF downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return