Volume 7 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Jiaqin He, Dongyun Chen, Najun Li, Qingfeng Xu, Hua Li, Jinghui He, Jianmei Lu. Pt–Pd bimetallic nanoparticles anchored on uniform mesoporous MnO2 sphere as an advanced nanocatalyst for highly efficient toluene oxidation. Green Energy&Environment, 2022, 7(6): 1349-1360. doi: 10.1016/j.gee.2021.03.002
Citation: Jiaqin He, Dongyun Chen, Najun Li, Qingfeng Xu, Hua Li, Jinghui He, Jianmei Lu. Pt–Pd bimetallic nanoparticles anchored on uniform mesoporous MnO2 sphere as an advanced nanocatalyst for highly efficient toluene oxidation. Green Energy&Environment, 2022, 7(6): 1349-1360. doi: 10.1016/j.gee.2021.03.002

Pt–Pd bimetallic nanoparticles anchored on uniform mesoporous MnO2 sphere as an advanced nanocatalyst for highly efficient toluene oxidation

doi: 10.1016/j.gee.2021.03.002
  • Improving catalytic performance is a yet still challenge in thermal catalytic oxidation. Herein, uniform mesoporous MnO2 nanosphere-supported bimetallic Pt–Pd nanoparticles were successfully fabricated via a SiO2 template strategy for the total catalytic degradation of volatile organic compounds at low temperature. The introduction of mesopores into the MnO2 support induces a large specific surface area and pore size, thus providing numerous accessible active sites and enhanced diffusion properties. Moreover, the addition of a secondary noble metal can adjust the Oads/Olatt molar ratios, resulting in high catalytic activity. Among them, the catalyst having a Pt/Pd molar ratio of 7:3 exhibits optimized catalytic activity at a weight hourly space velocity of 36,000 mL g-1 h-1, reaching 100% toluene oxidation at 175 °C with a lower activation energy (57.0 kJ mol-1) than the corresponding monometallic Pt or non-Pt-based catalysts (93.8 kJ mol-1 and 214.2 kJ mol-1). Our findings demonstrate that the uniform mesoporous MnO2 nanosphere-supported bimetallic Pt–Pd nanoparticles catalyst is an effective candidate for application in elimination of toluene.

     

  • • Uniform mesoporous MnO2 nanosphere-supported bimetallic Pt–Pd nanoparticles were fabricated using hard templates. • The introduction of mesopores induces a large specific surface area providing numerous accessible active sites. • The addition of a secondary noble metal can adjust the Oads/Olatt molar ratios, resulting in high catalytic activity. • The catalyst having a Pt/Pd molar ratio of 7:3 exhibits optimized activity, reaching 100% toluene oxidation at 175 °C.
  • loading
  • [1]
    R. Fang, S. Zhao, Z. Sun, D.-W. Wang, H.-M. Cheng, F. Li, Adv. Mater. 29 (2017) 1606823.
    [2]
    Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Chem. Soc. Rev. 45 (2016) 5605–5634.
    [3]
    A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Chem. Rev. 114 (2014) 11751–11787.
    [4]
    Z. Yuan, H.-J. Peng, T.-Z. Hou, J.-Q. Huang, C.-M. Chen, D.-W. Wang, X.-B. Cheng, F. Wei, Q. Zhang, Nanomater Lett. 16 (2016) 519–527.
    [5]
    C. Wang, K. Su, W. Wan, H. Guo, H. Zhou, J. Chen, X. Zhang, Y. Huang, J. Mater. Chem. A 2 (2014) 5018–5023.
    [6]
    Q.Q. Wang, J.B. Huang, G.R. Li, Z. Lin, B.H. Liu, Z.P. Li, J. Power Sources 339 (2017) 20–26.
    [7]
    C. Wang, X. Wang, Y. Wang, J. Chen, H. Zhou, Y. Huang, Nano Energy 11 (2015) 678–686.
    [8]
    H. Wang, Y. Yang, Y. Liang, J.T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Nano Lett. 11 (2011) 2644–2647.
    [9]
    Z. Cui, C. Zu, W. Zhou, A. Manthiram, J.B. Goodenough, Adv. Mater. 28 (2016) 6926–6931.
    [10]
    M. Zhao, H.-J. Peng, Z.-W. Zhang, B.-Q. Li, X. Chen, J. Xie, X. Chen, J.- Y. Wei, Q. Zhang, J.-Q. Huang, Angew. Chem. Int. Ed. 58 (2019) 3779–3783.
    [11]
    D. Tian, X. Song, M. Wang, X. Wu, Y. Qiu, B. Guan, X. Xu, L. Fan, N. Zhang, K. Sun, Adv. Energy Mater. 9 (2019) 1901940.
    [12]
    X. Wu, N. Liu, Z. Guo, M. Wang, Y. Qiu, D. Tian, B. Guan, L. Fan, N. Zhang, Energy Storage Mater. 28 (2020) 153–159.
    [13]
    S. Bai, X. Liu, K. Zhu, S. Wu, H. Zhou, Nat. Energy 1 (2016) 16094.
    [14]
    K. Chen, Z. Sun, R. Fang, Y. Shi, H.-M. Cheng, F. Li, Adv. Funct. Mater. 28 (2018) 1707592.
    [15]
    L. Fan, H. Wu, X. Wu, M. Wang, J. Cheng, N. Zhang, Y. Feng, K. Sun, Electrochim. Acta 295 (2019) 444–451.
    [16]
    X. Liu, J.-Q. Huang, Q. Zhang, L. Mai, Adv. Mater. 29 (2017) 1601759.
    [17]
    Y. Wang, R. Zhang, J. Chen, H. Wu, S. Lu, K. Wang, H. Li, C.J. Harris, K. Xi, R.V. Kumar, S. Ding, Adv. Energy Mater. 9 (2019) 1900953.
    [18]
    E.H.M. Salhabi, J. Zhao, J. Wang, M. Yang, B. Wang, D. Wang, Angew. Chem. Int. Ed. 131 (2019) 9176–9180.
    [19]
    Z. Li, J. Zhang, X.W. Lou, Angew. Chem. Int. Ed. 54 (2015) 12886–12890.
    [20]
    X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L.F. Nazar, Nat. Commun. 6 (2015) 5682.
    [21]
    C. Tang, B.-Q. Li, Q. Zhang, L. Zhu, H.-F. Wang, J.-L. Shi, F. Wei, Adv. Funct. Mater. 26 (2016) 577–585.
    [22]
    Z. Li, C. Li, X. Ge, J. Ma, Z. Zhang, Q. Li, C. Wang, L. Yin, Nano Energy 23 (2016) 15–26.
    [23]
    J. He, A. Manthiram, Energy Storage Mater. 20 (2019) 55–70.
    [24]
    J. He, G. Hartmann, M. Lee, G.S. Hwang, Y. Chen, A. Manthiram, Energy Environ. Sci. 12 (2019) 344–350.
    [25]
    J. Park, B.-C. Yu, J.S. Park, J.W. Choi, C. Kim, Y.-E. Sung, J.B. Goodenough, Adv. Energy Mater. 7 (2017) 1602567.
    [26]
    A. Bruix, H.G. Füchtbauer, A.K. Tuxen, A.S. Walton, M. Andersen, S. Porsgaard, F. Besenbacher, B. Hammer, J.V. Lauritsen, ACS Nano 9 (2015) 9322–9330.
    [27]
    C. Tan, Z. Luo, A. Chaturvedi, Y. Cai, Y. Du, Y. Gong, Y. Huang, Z. Lai, X. Zhang, L. Zheng, X. Qi, M.H. Goh, J. Wang, S. Han, X.-J. Wu, L. Gu, C. Kloc, H. Zhang, Adv. Mater. 30 (2018) 1705509.
    [28]
    D. Voiry, H. Yamaguchi, J. Li, R. Silva, D.C.B. Alves, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowalla, Nat. Mater. 12 (2013) 850–855.
    [29]
    H. Lin, L. Yang, X. Jiang, G. Li, T. Zhang, Q. Yao, G.W. Zheng, J.Y. Lee, Energy Environ. Sci. 10 (2017) 1476–1486.
    [30]
    H.-E. Wang, X. Li, N. Qin, X. Zhao, H. Cheng, G. Cao, W. Zhang, J. Mater. Chem. A 7 (2019) 12068–12074.
    [31]
    M. Liu, C. Zhang, J. Su, X. Chen, T. Ma, T. Huang, A. Yu, ACS Appl. Mater. Interfaces 11 (2019) 20788–20795.
    [32]
    S. Majumder, M. Shao, Y. Deng, G. Chen, J. Electrochem. Soc. 166 (2019) A5386–A5395.
    [33]
    S. Xiao, J. Zhang, Y. Deng, G. Zhou, R. Wang, Y.-B. He, W. Lv, Q.- H. Yang, ACS Appl. Energy Mater. 3 (2020) 4923–4930.
    [34]
    T. Lei, W. Chen, J. Huang, C. Yan, H. Sun, C. Wang, W. Zhang, Y. Li, J. Xiong, Adv. Energy Mater. 7 (2017) 1601843.
    [35]
    C.-H. Chang, S.-H. Chung, A. Manthiram, Small 12 (2016) 174–179.
    [36]
    T.-Z. Zhuang, J.-Q. Huang, H.-J. Peng, L.-Y. He, X.-B. Cheng, C.- M. Chen, Q. Zhang, Small 12 (2016) 381–389.
    [37]
    Z.A. Ghazi, X. He, A.M. Khattak, N.A. Khan, B. Liang, A. Iqbal, J. Wang, H. Sin, L. Li, Z. Tang, Adv. Mater. 29 (2017) 1606817.
    [38]
    J. Balach, T. Jaumann, M. Klose, S. Oswald, J. Eckert, L. Giebeler, J. Power Sources 303 (2016) 317–324.
    [39]
    G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169–11186.
    [40]
    P.E. Blöchl, Phys. Rev. B 50 (1994) 17953–17979.
    [41]
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865–3868.
    [42]
    D.J. Chadi, Phys. Rev. B 16 (1977) 1746–1747.
    [43]
    B. Mahler, V. Hoepfner, K. Liao, G.A. Ozin, J. Am. Chem. Soc. 136 (2014) 14121–14127.
    [44]
    S. Masimukku, C.Y. Wu, J.-G. Duh, J. Wu, ACS Sustainable Chem. Eng. 7 (2019) 10363–10370.
    [45]
    X. Ding, T. Liu, S. Ahmed, N. Bao, J. Ding, J. Yi, J. Alloys Compd. 772 (2019) 740–744.
    [46]
    X. Sun, X. Luo, X. Zhang, J. Xie, S. Jin, H. Wang, X. Zheng, X. Wu, Y. Xie, J. Am. Chem. Soc. 141 (2019) 3797–3801.
    [47]
    F. Raza, J.H. Park, H.-R. Lee, H.-I. Kim, S.-J. Jeon, J.-H. Kim, ACS Catal. 6 (2016) 2754–2759.
    [48]
    S. Huang, Y. Wang, J. Hu, Y.V. Lim, D. Kong, Y. Zheng, M. Ding, M.E. Pam, H.Y. Yang, ACS Nano 12 (2018) 9504–9512.
    [49]
    N. Shi, B. Xi, Z. Feng, J. Liu, D. Wei, J. Liu, J. Feng, S. Xiong, Adv. Mater. Interfaces 6 (2019) 1802088.
    [50]
    F. Zhou, Z. Li, X. Luo, T. Wu, B. Jiang, L.-L. Lu, H.-B. Yao, M. Antonietti, S.-H. Yu, Nano Lett. 18 (2018) 1035–1043.
    [51]
    K. Xu, X. Liu, J. Liang, J. Cai, K. Zhang, Y. Lu, X. Wu, M. Zhu, Y. Liu, Y. Zhu, G. Wang, Y. Qian, ACS Energy Lett. 3 (2018) 420–427.
    [52]
    G. Zhou, H. Tian, Y. Jin, X. Tao, B. Liu, R. Zhang, Z.W. Seh, D. Zhuo, Y. Liu, J. Sun, J. Zhao, C. Zu, D.S. Wu, Q. Zhang, Y. Cui, Proc. Nat. Acad. Sci. U. S. A. 114 (2017) 840–845.
    [53]
    H. Yuan, H.-J. Peng, B.-Q. Li, J. Xie, L. Kong, M. Zhao, X. Chen, J.- Q. Huang, Q. Zhang, Adv. Energy Mater. 9 (2019) 1802768.
    [54]
    S. Mei, C.J. Jafta, I. Lauermann, Q. Ran, M. Kärgell, M. Ballauff, Y. Lu, Adv. Funct. Mater. 27 (2017) 1701176.
    [55]
    J. Zhang, J. Zhang, K. Liu, T. Yang, J. Tian, C. Wang, M. Chen, X. Wang, ACS Appl. Mater. Interfaces 11 (2019) 46767–46775.
    [56]
    L. Xu, H. Zhao, M. Sun, B. Huang, J. Wang, J. Xia, N. Li, D. Yin, M. Luo, F. Luo, Y. Du, C. Yan, Angew. Chem. Int. Ed. 58 (2019) 11491–11496.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (175) PDF downloads(22) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return