Volume 7 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Changyu Yang, Ning Gong, Tao Chen, Yang Li, Wenchao Peng, Fengbao Zhang, Xiaobin Fan. Enhanced catalytic conversion of polysulfides using high-percentage 1T-phase metallic WS2 nanosheets for Li–S batteries. Green Energy&Environment, 2022, 7(6): 1340-1348. doi: 10.1016/j.gee.2021.03.001
Citation: Changyu Yang, Ning Gong, Tao Chen, Yang Li, Wenchao Peng, Fengbao Zhang, Xiaobin Fan. Enhanced catalytic conversion of polysulfides using high-percentage 1T-phase metallic WS2 nanosheets for Li–S batteries. Green Energy&Environment, 2022, 7(6): 1340-1348. doi: 10.1016/j.gee.2021.03.001

Enhanced catalytic conversion of polysulfides using high-percentage 1T-phase metallic WS2 nanosheets for Li–S batteries

doi: 10.1016/j.gee.2021.03.001
  • High-energy-density lithium-sulfur batteries has attracted substantial attention as competitive candidates for large-scale energy storage technologies. Still, the adverse “shuttle effect” and sluggish sulfur conversion reaction kinetics immensely obstruct their commercial viability. Herein, a two-dimensional metallic 1T phase WS2 (1T-WS2) nanosheets modified functional separator is developed to improve the electrochemical performance. Meanwhile, the semiconducting bulk-WS2 crystals, and 2H phase WS2 (2H-WS2) nanosheets with more basal-plane S-vacancy defects are also prepared to probe the contributions of the crystal structure (phase), S-vacancy defects, and edges to the Li–S batteries performance experimentally and theoretically. In merits of the synergistic effect of high ion and electron conductivity, enhanced binding ability to lithium polysulfides (LiPSs), and sufficient electrocatalytic active sites, the 1T-WS2 shows highly efficient electrocatalysis of LiPSs conversion and further improves Li–S battery performance. As expected, thus-fabricated cells with 1T-WS2 nanosheets present superior cycle stability that maintain capacity decline of 0.039% per cycle after 1000 cycles at 1.0 C. The strategy presented here offers a viable approach to reveal the critical factors for LiPSs catalytic conversion, which is beneficial to developing advanced Li–S batteries with enhanced properties.

     

  • • 1T-WS2 and 2H-WS2 nanosheets are introduced in the separator of Li–S batteries. • The contributions of WS2 nanosheets’ phase, S-vacancy defects, and edges in Li-S batteries are revealed. • 1T-WS2 modified separator enables significant improvement of Li–S battery performance.
  • loading
  • [1]
    Q. Liu, L.P. Wu, R. Jackstell, M. Beller, Nat. Commun. 6 (2015) 5933.
    [2]
    N.M. Dowell, P.S. Fennell, N. Shah, G.C. Maitland, Nat. Clim. Change 7 (2017) 243–249.
    [3]
    F. Studt, I. Sharafutdinov, F. Abild-Pedersen, C.F. Elkjær, J.S. Hummelshøj, S. Dahl, I. Chorkendorff, J.K. Nørskov, Nat. Commun. 6 (2014) 320–324.
    [4]
    J. Artz, T.E. Müller, K. Thenert, Chem. Rev. 118 (2018) 434–504.
    [5]
    R.R. Shaikh, S. Pornpraprom, V. D'Elia, ACS Catal. 8 (2017) 419–450.
    [6]
    X.Y. Zhang, M. Fevre, G.O. Jones, R.M. Waymouth, Chem. Rev. 118 (2018) 839–885.
    [7]
    S.A. Freunberger, Y. Chen, Z.Q. Peng, J.M. Griffin, L.J. Hardwick, F. Bardé, P. Novák, P.G. Bruce, J. Am. Chem. Soc. 133 (2011) 8040–8047.
    [8]
    V. Zubar, Y. Lebedev, L.M. Azofra, L. Cavallo, O. El-Sepelgy, M. Rueping, Angew. Chem. Int. Ed. 57 (2018) 13439–13443.
    [9]
    C.C. Ng, R.W. Toh, T.T. Lin, H.K. Luo, T.S.A. Hor, J. Wu, Chem. Sci. 10 (2019) 1549–1554.
    [10]
    J. Li, Y.L. Han, H. Lin, N.H. Wu, Q.K. Li, J. Jiang, J.H. Zhu, ACS Appl. Mater. Interfaces 12 (2020) 609–618.
    [11]
    S. Shyshkanov, T.N. Nguyen, F.M. Ebrahim, K.C. Stylianou, P.J. Dyson, Angew. Chem. Int. Ed. 58 (2019) 5371–5375.
    [12]
    Q.X. Han, B. Qi, W.M. Ren, C. He, J.Y. Niu, C.Y. Duan, Nat. Commun. 6 (2015) 10007.
    [13]
    Y. Kim, K. Hyun, D. Ahn, R. Kim, M.H. Park, Y. Kim, ChemSusChem 12 (2019) 4211–4220.
    [14]
    Y.Q. Xie, J. Liang, Y.W. Fu, M.T. Huang, X. Xu, H.T. Wang, S. Tu, J. Li, J. Mater. Chem. 6 (2018) 6660–6666.
    [15]
    F.D. Bobbink, D. Vasilyev, M. Hulla, S. Chamam, F. Menoud, G. Laurenczy, S. Katsyuba, P.J. Dyson, ACS Catal. 8 (2018) 2589–2594.
    [16]
    B.H. Xu, J.Q. Wang, J. Sun, Y. Huang, J.P. Zhang, X.P. Zhang, S.J. Zhang, Green Chem. 17 (2015) 108–122.
    [17]
    M. North, S.C.Z. Quek, N.E. Pridmore, A.C. Whitwood, X. Wu, ACS Catal. 5 (2015) 3398–3402.
    [18]
    D. X Ma, B.Y. Li, K. Liu, X. L Zhang, W.J. Zou, Y.Q. Yang, G. H Li, Z. Shi, S.H. Feng, J. Mater. Chem. A 3 (2015) 23136–23142.
    [19]
    H. Olivier-Bourbigou, L. Magna, D. Morvan, Appl. Catal. Gen. 373 (2010) 1–56.
    [20]
    Z.J. Guo, Q.W. Jiang, Y.M. Shi, J. Li, X.N. Yang, W. Hou, Y. Zhou, J. Wang, ACS Catal. 7 (2017) 6770–6780.
    [21]
    X.L. Meng, Z.Y. Ju, S.J. Zhang, X.D. Liang, N.V. Solms, X.C. Zhang, X.P. Zhang, Green Chem. 21 (2019) 3456–3463.
    [22]
    J. Liu, G.Q. Yang, Y. Liu, D.J. Zhang, X.B. Hu, Z.B. Zhang, Green Chem. 22 (2020) 4509–4515.
    [23]
    J.Y. Hu, J. Ma, H.Z. Liu, Q.L. Qian, C. Xie, B.X. Han, Green Chem. 20 (2018) 2990–2994.
    [24]
    F.S. Liu, Y.Q. Gu, P.H. Zhao, J. Gao, M.S. Liu, ACS Sustain. Chem. Eng. 7 (2019) 5940–5945.
    [25]
    L. Wang, X.F. Jin, P. Li, J.L. Zhang, Ind. Eng. Chem. Res. 53 (2014) 8426–8435.
    [26]
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, R.J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.02, Gaussian Inc., Wallingford, CT, 2009.
    [27]
    A.D. Becke, J. Chem. Phys. 98 (1993) 5648–5652.
    [28]
    J.P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 54 (1996) 16533–16539.
    [29]
    P.M.W. Gill, B.G. Johnson, J.A. Pople, M.J. Frisch, Chem. Phys. Lett. 197 (1992) 499–505.
    [30]
    K. Fukui, J. Phys. Chem. 74 (1970) 4161–4163.
    [31]
    Y. Zhao, D.G. Truhlar, Theor. Chem. Acc. 120 (2008) 215–241.
    [32]
    S. Miertuš, E. Scrocco, J. Tomasi, Chem. Phys. 55 (1981) 117–129.
    [33]
    S. Miertuš, J. Tomasi, Chem. Phys. 65 (1982) 239–245.
    [34]
    R.F.W. Bader, P.M. Beddall, J. Chem. Phys. 56 (1972) 3320–3329.
    [35]
    U. Koch, P.L.A. Popelier, J. Phys. Chem. 99 (1995) 9747–9754.
    [36]
    A. Savin, R. Nesper, S. Wengert, T.F. Fassler, Angew. Chem. Int. Ed. 36 (1997) 1808–1832.
    [37]
    T. Burnus, M.A.L. Marques, E.K.U. Gross, Phys. Rev. A 71 (2005), 010501.
    [38]
    J. Poater, M. Duran, M. Sola, B. Silvi, Chem. Rev. 105 (2005) 3911–3947.
    [39]
    T. Lu, F. Chen, J. Comput. Chem. 33 (2012) 580–592.
    [40]
    C.Q. Yuan, H.M. Wu, M.Y. Jia, P.F. Su, Z.X. Luo, J.N. Yao, Phys. Chem. Chem. Phys. 18 (2016) 29249–29257.
    [41]
    A. Savin, B. Silvi, F. Colonna, Can. J. Chem. 74 (1996) 1088–1096.
    [42]
    T.F. Wang, X.R. Zhu, L.M. Mao, Y. Liu, T.G. Ren, L. Wang, J.L. Zhang, J. Mol. Liq. 296 (2019) 111936.
    [43]
    H.Q. Yang, X. Wang, Y. Ma, L. Wang, J.L. Zhang, Catal. Sci. Technol. 6 (2016) 7773–7782.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (129) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return