Volume 7 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Yuyang Fan, Chao Liu, Xiangchen Kong, Yue Han, Ming Lei, Rui Xiao. A new perspective on polyethylene-promoted lignin pyrolysis with mass transfer and radical explanation. Green Energy&Environment, 2022, 7(6): 1318-1326. doi: 10.1016/j.gee.2021.02.004
Citation: Yuyang Fan, Chao Liu, Xiangchen Kong, Yue Han, Ming Lei, Rui Xiao. A new perspective on polyethylene-promoted lignin pyrolysis with mass transfer and radical explanation. Green Energy&Environment, 2022, 7(6): 1318-1326. doi: 10.1016/j.gee.2021.02.004

A new perspective on polyethylene-promoted lignin pyrolysis with mass transfer and radical explanation

doi: 10.1016/j.gee.2021.02.004
  • Co-pyrolysis of lignin and waste plastics, for example polyethylene (PE), has been studied, but related reports are basically on condition optimizations. This study revealed a new perspective on PE-promoted lignin pyrolysis to phenolic monomers with mass transfer and radical explanation. Lignin and PE were first pyrolyzed individually to identify pyrolysis characteristics, pyrolytic products, as well as the suitable co-pyrolysis temperature. Then, co-pyrolysis of blended lignin/PE with various ratios was investigated. Yields of lignin products reached the maximum under lignin/PE ratio of 1:1, but blended approach always inhibited the production of lignin phenols. This resulted from the poor mass transfer and interactions between lignin and PE, in which PE pyrolysates could easily escape from the particle gaps. While in layered approach, PE pyrolysates had to pass through the lignin layer which contributed to the good interactions with lignin pyrolysis intermediates, thus the yields of lignin-derived products were significantly improved. Interactions between lignin and PE (or their pyrolysates) were mainly radical quenching reactions, and X-ray photoelectron spectrum (XPS) and electron paramagnetic resonance (EPR) of pyrolytic chars were conducted to verify these interactions controlled by mass transfer. The percentage of C==C (sp2) and concentration of organic stable radicals in layered lignin/PE char were both the lowest compared with those in blended lignin/PE and lignin char, indicating the stabilization of lignin-derived radicals by PE pyrolysates. Moreover, the spin concentration of radicals in the char from layered char/PE was lower than that in lignin char, which further affirmed the quenching of radicals by PE in the layered co-pyrolysis mode.

     

  • • Mass transfer and radical reactions together controlled lignin/PE co-pyrolysis. • Layered lignin/PE demonstrated the highest yields and lowest radical concentrations. • Possible reaction pathways of PE-promoted lignin pyrolysis were proposed.
    Yuyang Fan and Chao Liu contributed equally to the production of this paper.
  • loading
  • [1]
    J. Wang, Y. Wang, Z. Ma, L. Yan, Green Energy Environ. 5 (2020) 232–239.
    [2]
    A. Jain, S.C. Jonnalagadda, K.V. Ramanujachary, A. Mugweru, Catal. Commun. 58 (2015) 179–182.
    [3]
    A. Lolli, S. Albonetti, L. Utili, R. Amadori, F. Ospitali, C. Lucarelli, F. Cavani, Appl. Catal. Gen. 504 (2015) 408–419.
    [4]
    Y. Zhang, X. Tong, L. Yu, L. Meng, P. Guo, S. Xue, Green Energy Environ. 4 (2019) 424–431.
    [5]
    D.S. Naidu, S.P. Hlangothi, M.J. John, Carbohydr. Polym. 179 (2018) 28–41.
    [6]
    J. Ma, Z. Liu, J. Song, L. Zhong, D. Xiao, H. Xi, X. Li, R. Sun, X. Peng, Green Chem. 20 (2018) 5188–5195.
    [7]
    M. Toivari, M.L. Vehkomaki, Y. Nygard, M. Penttila, L. Ruohonen, M.G. Wiebe, Bioresour. Technol. 133 (2013) 555–562.
    [8]
    T. Rafaïdeen, S. Baranton, C. Coutanceau, Appl. Catal. B Environ. 243 (2019) 641–656.
    [9]
    H. Liu, K.N. Valdehuesa, G.M. Nisola, K.R. Ramos, W.J. Chung, Bioresour. Technol. 115 (2012) 244–248.
    [10]
    W. Niu, M.N. Molefe, J.W. Frost, J. Am. Chem. Soc. 28 (2003) 12998–12999.
    [11]
    J. Ma, L. Zhong, X. Peng, R. Sun, Green Chem. 18 (2016) 1738–1750.
    [12]
    B.W. Chun, B. Dair, P.J. Macuch, D. Wiebe, C. Porteneuve, A. Jeknavorian, Appl. Biocem. Biotechnol. 129 (2006) 645–658.
    [13]
    Y. Miao, X. Zhou, Y. Xu, S. Yu, Genome Announc. 3 (2015) 1–2.
    [14]
    M. Pan, J. Wang, W. Fu, B. Chen, J. Lei, W. Chen, X. Duan, D. Chen, G. Qian, X. Zhou, Green Energy Environ. 5 (2020) 76–82.
    [15]
    J. Diao, Z. Feng, R. Huang, H. Liu, S.B.A. Hamid, D.S. Su, ChemSusChem 9 (2016) 662–666.
    [16]
    H. Liu, J. Diao, Q. Wang, S. Gu, T. Chen, C. Miao, W. Yang, D. Su, Chem. Commun. 50 (2014) 7810–7812.
    [17]
    J. Zhang, L. Qu, G. Shi, J. Liu, J. Chen, L. Dai, Angew. Chem. Int. Ed. 55 (2016) 2230–2234.
    [18]
    P. Wu, L. Lu, J. He, L. Chen, Y. Chao, M. He, F. Zhu, X. Chu, H. Li, W. Zhu, Green Energy Environ. 5 (2020) 166–172.
    [19]
    L. Liu, G. Zeng, J. Chen, L. Bi, L. Dai, Z. Wen, Nanomater. Energy 49 (2018) 393–402.
    [20]
    Y. Ito, W. Cong, T. Fujita, Z. Tang, M. Chen, Angew. Chem. Int. Ed. 54 (2015) 2131–2136.
    [21]
    M. Chhetri, S. Maitra, H. Chakraborty, U.V. Waghmare, C.N.R. Rao, Energy Environ. Sci. 9 (2016) 95–101.
    [22]
    J. Zhang, Y. Deng, X. Cai, Y. Chen, M. Peng, Z. Jia, Z. Jiang, P. Ren, S. Yao, J. Xie, D. Xiao, X. Wen, N. Wang, H. Liu, D. Ma, ACS Catal. 9 (2019) 5998–6005.
    [23]
    Y. Gao, G. Hu, J. Zhong, Z. Shi, Y. Zhu, D.S. Su, J. Wang, X. Bao, D. Ma, Angew. Chem. Int. Ed. 52 (2013) 2109–2113.
    [24]
    H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu, L. Wang, W. Li, Z. Chen, X. Ji, J. Li, Energy Environ. Sci. 12 (2019) 322–333.
    [25]
    M. Rinaudo, Prog. Polym. Sci. 31 (2006) 603–632.
    [26]
    Q. Zhu, F. Wang, F. Zhang, Z. Dong, Nanoscale 11 (2019) 17736–17745.
    [27]
    H. Zhang, N. Li, X. Pan, S. Wu, J. Xie, Green Chem. 18 (2016) 2308–2312.
    [28]
    X. Liu, L. Fu, N. Liu, T. Gao, Y. Zhang, L. Liao, Z. Liu, J. Phys. Chem. C 115 (2011) 11976–11982.
    [29]
    G. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169–11186.
    [30]
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865–3868.
    [31]
    T. Li, J. Liu, Y. Song, F. Wang, ACS Catal. 8 (2018) 8450–8458.
    [32]
    S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104.
    [33]
    W.J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.J. Zhang, J.Q. Wang, J.S. Hu, Z. Wei, L.J. Wan, J. Am. Chem. Soc. 138 (2016) 3570–3578.
    [34]
    W. Zhu, B. Dai, P. Wu, Y. Chao, J. Xiong, S. Xun, H. Li, H. Li, ACS Sustain. Chem. Eng. 3 (2017) 186–194.
    [35]
    Z. Liu, Z. Zhao, Y. Wang, S. Dou, D. Yan, D. Liu, Z. Xia, S. Wang, Adv. Mater. 29 (2017) 1606207.
    [36]
    Z. Zhang, M. Dou, H. Liu, L. Dai, F. Wang, Small 12 (2016) 4193–4199.
    [37]
    Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C.L. Brown, X. Yao, Adv. Mater. 28 (2016) 9532–9538.
    [38]
    C. Tang, Q. Zhang, Adv. Mater. 29 (2017) 1604103.
    [39]
    Y. Ma, S. Jiang, G. Jian, H. Tao, L. Yu, X. Wang, X. Wang, J. Zhu, Z. Hu, Y. Chen, Energy Environ. Sci. 2 (2008) 224–229.
    [40]
    S. Chen, J. Duan, M. Jaroniec, S.Z. Qiao, Adv. Mater. 26 (2014) 2925–2930.
    [41]
    R. Sharma, K.K. Kar, Electrochim. Acta 191 (2016) 876–886.
    [42]
    Y. Zheng, Y. Jiao, Y. Zhu, Q. Cai, A. Vasileff, L.H. Li, Y. Han, Y. Chen, S.Z. Qiao, J. Am. Chem. Soc. 139 (2017) 3336–3339.
    [43]
    S.H. Ahn, A. Manthiram, Small 13 (2017) 1603437.
    [44]
    H. Schmiers, J. Friebel, P. Streubel, R. Hesse, R. Kopsel, Carbon 37 (1999) 1965–1978.
    [45]
    C. Hu, L. Dai, Adv. Mater. 29 (2017) 1604942.
    [46]
    H. Jiang, C. Li, H. Shen, Y. Liu, W. Li, J. Li, Electrochim. Acta 231 (2017) 344–353.
    [47]
    Z. Yang, M. Xu, Y. Liu, F. He, F. Gao, Y. Su, H. Wei, Y. Zhang, Nanoscale 6 (2014) 1890–1895.
    [48]
    T. Gao, T. Gao, W. Fang, Q. Cao, Mol. Catal. 439 (2017) 171–179.
    [49]
    X. Wan, C. Zhou, J. Chen, W. Deng, Q. Zhang, Y. Yang, Y. Wang, ACS Catal. 4 (2014) 2175–2185.
    [50]
    X. Han, C. Li, Y. Guo, X. Liu, Y. Zhang, Y. Wang, Appl. Catal. Gen. 526 (2016) 1–8.
    [51]
    B. Donoeva, N. Masoud, P.E. de Jongh, ACS Catal. 7 (2017) 4581–4591.
    [52]
    B. Liu, Y. Ren, Z. Zhang, Green Chem. 17 (2015) 1610–1617.
    [53]
    Z. He, B. Dong, W. Wang, G. Yang, Y. Cao, H. Wang, Y. Yang, Q. Wang, F. Peng, H. Yu, ACS Catal. 9 (2019) 2893–2901.
    [54]
    D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Science 351 (2016) 361–365.
    [55]
    S.E. Davis, B.N. Zope, R.J. Davis, Green Chem. 14 (2012) 143–147.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (259) PDF downloads(24) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return