Volume 7 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Biaohua Chen, Dahai Zheng, Ruinian Xu, Shuai Leng, Lili Han, Qianqian Zhang, Ning Liu, Chengna Dai, Bin Wu, Gangqiang Yu, Jie Cheng. Disposal methods for used passenger car tires: One of the fastest growing solid wastes in China. Green Energy&Environment, 2022, 7(6): 1298-1309. doi: 10.1016/j.gee.2021.02.003
Citation: Biaohua Chen, Dahai Zheng, Ruinian Xu, Shuai Leng, Lili Han, Qianqian Zhang, Ning Liu, Chengna Dai, Bin Wu, Gangqiang Yu, Jie Cheng. Disposal methods for used passenger car tires: One of the fastest growing solid wastes in China. Green Energy&Environment, 2022, 7(6): 1298-1309. doi: 10.1016/j.gee.2021.02.003

Disposal methods for used passenger car tires: One of the fastest growing solid wastes in China

doi: 10.1016/j.gee.2021.02.003
  • With the rapid growth in the number of passenger cars (PCs) in China over the past decades, more than ten million tons of used tires have already become solid wastes and subsequently caused serious environmental issues. Due to the presence of synthetic rubber in PC tires, waste PC tires cannot be disposed through rubber reclaiming technology. Thus, waste PC tires have become one of fastest growing solid wastes in China. First, the current disposal capacity of the pyrolysis method, regarded as a promising technology for the disposal of waste PC tires, is surveyed and compared with other disposal methods mentioned in previous papers. Second, this work establishes a model to predict the total number of waste PC tires in the next five years depending on the rate of PC growth and current waste tire disposal capacity. Moreover, pyrolysis is evaluated on 15 collected waste PC tires selected from the most representative tire brands in the Chinese market. The corresponding results imply that ∼68.5% of S was into oil and ∼44.3% N and large amount of heavy metals resided in solid carbon which severely limit further applications. Finally, a new pyrolysis technology is introduced that may represent a solution to the limits in the application of tire disposal methods and relief for the coming waste tire crisis.

     

  • • Waste PC tire generation and disposal method in China are investigated and surveyed. • A model for prediction of waste PC tires in next few years is established. • Pyrolysis is employed on 15 collected PC tire samples to evaluate this manner.
  • loading
  • [1]
    P. Simon, Y. Gogotsi, B. Dunn, Science 343 (2014) 1210–1211.
    [2]
    K.A. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao, C. Yang, K.M. Hercule, C. Lin, C. Shi, Q. Wei, L. Zhou, L. Mai, Nat. Commun. 8 (2017) 14264.
    [3]
    Y. Wang, P. Yang, L. Zheng, X. Shi, H. Zheng, Energy Storage Mater. 26 (2020) 349–370.
    [4]
    S. Xu, T. Wang, Y. Ma, W. Jiang, S. Wang, M. Hong, N. Hu, Y. Su, Y. Zhang, Z. Yang, ChemSusChem 10 (2017) 4056–4065.
    [5]
    Q. Yu, J. Lv, Z. Liu, M. Xu, W. Yang, K.A. Owusu, L. Mai, D. Zhao, L. Zhou, Sci. Bull. 64 (2019) 1617–1624.
    [6]
    D.P. Dubal, O. Ayyad, V. Ruiz, P. Gomez-Romero, Chem. Soc. Rev. 44 (2015) 1777–1790.
    [7]
    G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41 (2012) 797–828.
    [8]
    L. Zheng, J. Song, X. Ye, Y. Wang, X. Shi, H. Zheng, Nanoscale 12 (2020) 13811–13821.
    [9]
    Q. Guo, N. Chen, L. Qu, Carbon Energy 2 (2020) 54–71.
    [10]
    B. Akinwolemiwa, C. Peng, G.Z. Chen, J. Electrochem. Soc. 162 (2015) A5054–A5059.
    [11]
    R. Wang, Y. Luo, Z. Chen, M. Zhang, T. Wang, Sci. China Mater. 59 (2016) 629–638.
    [12]
    Y. Huang, F. Cui, J. Bao, Y. Zhao, J. Lian, T. Liu, H. Li, J. Mater. Chem. A 7 (2019) 20778–20789.
    [13]
    L. Zheng, F. Teng, X. Ye, H. Zheng, X. Fang, Adv. Energy Mater. 10 (2019) 1902355.
    [14]
    W. Zhao, Y. Zheng, L. Cui, D. Jia, D. Wei, R. Zheng, C. Barrow, W. Yang, J. Liu, Chem. Eng. J. 371 (2019) 461–469.
    [15]
    Q. Yang, Y. Liu, M. Yan, Y. Lei, W. Shi, Chem. Eng. J. 370 (2019) 666–676.
    [16]
    M. Verma, R. Yadav, L. Sinha, S.S. Mali, C.K. Hong, Parasharam m. Shirage, RSC Adv. 8 (2018) 40198–40209.
    [17]
    S. Wang, Z. Xiao, S. Zhai, H. Wang, W. Cai, L. Qin, J. Huang, D. Zhao, Z. Li, Q. An, J. Mater. Chem. A 7 (2019) 17345–17356.
    [18]
    Y.K. Hsu, Y.C. Chen, Y.G. Lin, Electrochim. Acta 139 (2014) 401–407.
    [19]
    X. Wang, J. Hu, Y. Su, J. Hao, F. Liu, S. Han, J. An, J. Lian, Chem. Eur. J. 23 (2017) 4128–4136.
    [20]
    T. Chen, Y.F. Tang, Y.Q. Qiao, Z.Y. Liu, W.F. Guo, J.Z. Song, S.C. Mu, S.X. Yu, Y.F. Zhao, F.M. Gao, Sci. Rep. 6 (2016) 28516.
    [21]
    Q. Chen, J. Jin, Z. Kou, J. Jiang, Y. Fu, Z. Liu, L. Zhou, L. Mai, J. Mater. Chem. A 8 (2020) 13114–13120.
    [22]
    F. Lai, J. Feng, T. Heil, Z. Tian, J. Schmidt, G.-C. Wang, M. Oschatz, J. Mater. Chem. A 7 (2019) 19342–19347.
    [23]
    R. Ren, M.S. Faber, R. Dziedzic, Z.H. Wen, S. Jin, S. Mao, J.H. Chen, Nanotechnology 26 (2015) 494001.
    [24]
    H. Chen, M.Q. Wang, Y.N. Yu, H. Liu, S.Y. Lu, S.J. Bao, M.W. Xu, ACS Appl. Mater. Interfaces 9 (2017) 35040–35047.
    [25]
    B. Xie, M. Yu, L. Lu, H. Feng, Y. Yang, Y. Chen, H. Cui, R. Xiao, J. Liu, Carbon 141 (2019) 134–142.
    [26]
    X.H. Wang, H.Y. Xia, X.Q. Wang, B. Shi, Y. Fang, RSC Adv. 6 (2016) 97482–97490.
    [27]
    Y. Zhang, C. Dai, W. Liu, Y. Wang, F. Ding, P. Zou, X. Wang, Q. Zhao, H. Rao, Mikrochim. Acta 186 (2019) 340.
    [28]
    H. Chen, M. Fan, C. Li, G. Tian, C. Lv, D. Chen, K. Shu, J. Jiang, J. Power Sources 329 (2016) 314–322.
    [29]
    K. Tao, X. Han, Q. Ma, L. Han, Dalton Trans. 47 (2018) 3496–3502.
    [30]
    Y. Zhu, H. Chen, S. Chen, C. Li, M. Fan, K. Shu, J. Mater. Sci. 53 (2018) 6157–6169.
    [31]
    M. Zhang, H. Fan, N. Zhao, H. Peng, X. Ren, W. Wang, H. Li, G. Chen, Y. Zhu, X. Jiang, P. Wu, Chem. Eng. J. 347 (2018) 291–300.
    [32]
    J. Lin, H. Wang, X. Zheng, Y. Du, C. Zhao, J. Qi, J. Cao, W. Fei, J. Feng, J. Power Sources 401 (2018) 329–335.
    [33]
    M.B. Muradov, O.O. Balayeva, A.A. Azizov, A.M. Maharramov, L.R. Qahramanli, G.M. Eyvazova, Z.A. Aghamaliyev, Infrared Phys. Technol. 89 (2018) 255–262.
    [34]
    W.-J. Zhou, J. Zhang, T. Xue, D.-D. Zhao, H.-L. Li, J. Mater. Chem. A 18 (2008) 905–910.
    [35]
    M.M. Syrokvashin, E.V. Korotaev, N.A. Kryuchkova, V.V. Zvereva, I.Y. Filatova, A.V. Kalinkin, Appl. Surf. Sci. 492 (2019) 209–218.
    [36]
    J. Yang, H.W. Liu, W.N. Martens, R.L. Frost, J. Phys. Chem. C 114 (2010) 111–119.
    [37]
    H. Dan, K. Tao, Y. Hai, L. Liu, Y. Gong, Nanoscale 11 (2019) 16810–16827.
    [38]
    B. Liu, H. Shioyama, H. Jiang, X. Zhang, Q. Xu, Carbon 48 (2010) 456–463.
    [39]
    H. Zhang, X. Deng, H. Huang, G. Li, X. Liang, W. Zhou, J. Guo, W. Wei, S. Tang, Electrochim. Acta 289 (2018) 193–203.
    [40]
    X. Deng, Q. Zhou, H. Huang, W. Zhou, X. Liang, G. Li, J. Guo, S. Tang, Appl. Surf. Sci. 495 (2019) 143557.
    [41]
    P. Xu, G. Wang, C. Miao, K. Cheng, K. Ye, K. Zhu, J. Yan, D. Cao, X. Zhang, Appl. Surf. Sci. 463 (2019) 82–90.
    [42]
    G. Li, Z. Chang, T. Li, L. Ma, K. Wang, Ionics 25 (2019) 3885–3895.
    [43]
    K. Tao, X. Han, Q. Cheng, Y. Yang, Z. Yang, Q. Ma, L. Han, Chem. Eur. J. 24 (2018) 12584–12591.
    [44]
    X. Han, K. Tao, D. Wang, L. Han, Nanoscale 10 (2018) 2735–2741.
    [45]
    W. Hu, R.Q. Chen, W. Xie, L.L. Zou, N. Qin, D.H. Bao, ACS Appl. Mater. Interfaces 6 (2014) 19318–19326.
    [46]
    S.E. Moosavifard, S. Fani, M. Rahmanian, Chem. Commun. 52 (2016) 4517–4520.
    [47]
    R. Kumar, P. Rai, A. Sharma, J. Mater. Chem. A 4 (2016) 17512–17520.
    [48]
    Y. Li, L. Cao, L. Qiao, M. Zhou, Y. Yang, P. Xiao, Y. Zhang, J. Mater. Chem. A 2 (2014) 6540–6548.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (719) PDF downloads(21) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return