Volume 7 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Lingxia Zheng, Weiqing Ye, Pengju Yang, Jianlan Song, Xiaowei Shi, Huajun Zheng. Manganese doping to boost the capacitance performance of hierarchical Co9S8@Co(OH)2 nanosheet arrays. Green Energy&Environment, 2022, 7(6): 1289-1297. doi: 10.1016/j.gee.2021.02.002
Citation: Lingxia Zheng, Weiqing Ye, Pengju Yang, Jianlan Song, Xiaowei Shi, Huajun Zheng. Manganese doping to boost the capacitance performance of hierarchical Co9S8@Co(OH)2 nanosheet arrays. Green Energy&Environment, 2022, 7(6): 1289-1297. doi: 10.1016/j.gee.2021.02.002

Manganese doping to boost the capacitance performance of hierarchical Co9S8@Co(OH)2 nanosheet arrays

doi: 10.1016/j.gee.2021.02.002
  • Transition metal sulfides (TMSs) have been regarded as greatly promising electrode materials for supercapacitors because of abundant redox electroactive sites and outstanding conductivity. Herein, we report a self-supported hierarchical Mn doped Co9S8@Co(OH)2 nanosheet arrays on nickel foam (NF) substrate by a one-step metal–organic-framework (MOF) engaged approach and a subsequent sulfurization process. Experimental results reveal that the introduction of manganese endows improved electric conductivity, enlarged electrochemical specific surface area, adjusted electronic structure of Co9S8@Co(OH)2 and enhanced interfacial activities as well as facilitated reaction kinetics of electrodes. The optimal Mn doped Co9S8@Co(OH)2 electrode exhibits an ultrahigh specific capacitance of 3745 F g-1 at 1 A g-1 (5.618 F cm-2 at 1.5 mA cm-2) and sustains 1710 F g-1 at 30 A g-1 (2.565 F cm-2 at 45 mA cm-2), surpassing most reported values on TMSs. Moreover, a battery-type asymmetric supercapacitor (ASC) device is constructed, which delivers high energy density of 50.2 Wh kg-1 at power density of 800 W kg-1, and outstanding long-term cycling stability (94% capacitance retention after 8000 cycles). The encouraging results might offer an effective strategy to optimize the TMSs for energy-storage devices.

     

  • • Self-supported hierarchical Mn doped Co9S8/Co(OH)2 nanosheet arrays are fabricated. • Introduction of Mn dopants adjusts electronic structure and interfacial active sites. • The optimal electrode endows ultrahigh specific capacitance and excellent stability. • Asymmetric supercapacitor exhibits high energy density and outstanding cycle life.
  • loading
  • [1]
    N. Huang, P. Wang, D.L. Jiang, Nat. Rev. Mater. 1 (2016) 16068.
    [2]
    R.K. Sharma, P. Yadav, M. Yadav, R. Gupta, P. Rana, A. Srivastava, R. Zbořil, R.S. Varma, M. Antonietti, M.B. Gawande, Mater. Horizons 7 (2020) 411–454.
    [3]
    D.G. Ma, Y. Wang, A.A. Liu, S.H. Li, C.C. Lu, C.C. Chen, Catalysts 8 (2018) 77–85.
    [4]
    S.Y. Ding, J. Gao, Q. Wang, Y. Zhang, W.G. Song, C.Y. Su, W. Wang, J. Am. Chem. Soc. 133 (2011) 19816–19822.
    [5]
    L.F. Liu, B.X. Zhang, X.N. Tan, D.X. Tan, X.Y. Cheng, B.X. Han, J.L. Zhang, Chem. Commun. 56 (2020) 4567–4570.
    [6]
    F.Y. Zhang, J.L. Zhang, B.X. Zhang, X.N. Tan, D. Shao, J.B. Shi, D.X. Tan, L.F. Liu, J.Q. Feng, B.X. Han, G.Y. Yang, L.R. Zheng, J. Zhang, ChemSusChem 11 (2018) 3576–3580.
    [7]
    S. Li, M.F.M. Wu, T. Guo, L.L. Zheng, D.K. Wang, Y. Mu, Q.J. Xing, J.P. Zou, Appl. Catal. B Environ. 272 (2020) 118989.
    [8]
    F. Li, D.K. Wang, Q.J. Xing, G. Zhou, S.S. Liu, Y. Li, L.L. Zheng, P. Ye, J.P. Zou, Appl. Catal. B Environ. 243 (2019) 621–628.
    [9]
    S. Wan, J. Guo, J. Kim, H. Ihee, D.L. Jiang, Angew. Chem. Int. Ed. 47 (2008) 8826–8830.
    [10]
    G. Das, B.P. Biswal, S. Kandambeth, V. Venkatesh, G. Kaur, M. Addicoat, T. Heine, S. Verma, R. Banerjee, Chem. Sci. 6 (2015) 3931–3939.
    [11]
    P.J. Waller, S.J. Lyle, T.M. Osborn Popp, C.S. Diercks, J.A. Reimer, O.M. Yaghi, J. Am. Chem. Soc. 138 (2016) 15519–15522.
    [12]
    N. Huang, L.P. Zhai, H. Xu, D.L. Jiang, J. Am. Chem. Soc. 139 (2017) 2428–2434.
    [13]
    Q. Sun, B. Aguila, J. Perman, L.D. Earl, C.W. Abney, Y.C. Cheng, H. Wei, N. Nguyen, L. Wojtas, S.Q. Ma, J. Am. Chem. Soc. 139 (2017) 2786–2793.
    [14]
    H. Furukawa, O.M. Yaghi, J. Am. Chem. Soc. 131 (2009) 8875–8883.
    [15]
    C.R. DeBlase, K.E. Silberstein, T.-T. Truong, H.D. Abruña, W.R. Dichtel, J. Am. Chem. Soc. 135 (2013) 16821–16824.
    [16]
    X.H. Guo, Y. Tian, M.C. Zhang, Y. Li, R. Wen, X. Li, X.F. Li, Y. Xue, L.J. Ma, C.Q. Xia, S.J. Li, Chem. Mater. 30 (2018) 2299–2308.
    [17]
    C.T. Stoppiello, H. Isla, M. Martínez-abadía, M.W. Fay, C.D.J. Parmenter, M.J. Roe, B. Lerma-berlanga, Nanoscale 11 (2019) 2848–2854.
    [18]
    X. Feng, X.S. Ding, D.L. Jiang, Chem. Soc. Rev. 41 (2012) 6010–6022.
    [19]
    S.Y. Ding, W. Wang, Chem. Soc. Rev. 42 (2013) 548–568.
    [20]
    R.K. Yadav, A. Kumar, N.J. Park, K.J. Kong, J.O. Baeg, J. Mater. Chem. A 4 (2016) 9413–9418.
    [21]
    X.F. Shi, Y.J. Yao, Y.L. Xu, K. Liu, G.S. Zhu, L.F. Chi, G. Lu, ACS Appl. Mater. Interfaces 9 (2017) 7481–7488.
    [22]
    Y.H. Fu, X.L. Zhu, L. Huang, X.C. Zhang, F.M. Zhang, W.D. Zhu, Appl. Catal., B 239 (2018) 46–51.
    [23]
    M. Lu, Q. Li, J. Liu, F.M. Zhang, L. Zhang, J.L. Wang, Z.H. Kang, Y.Q. Lan, Appl. Catal. B Environ. 254 (2019) 624–633.
    [24]
    Y.G. Xiang, W.B. Dong, P. Wang, S.Y. Wang, X. Ding, F. Ichihara, Z. Wang, Y. Wada, S.B. Jin, Y.X. Weng, H. Chen, J.H. Ye, Appl. Catal. B Environ. 274 (2020) 119096.
    [25]
    J. Chen, X.P. Tao, C.Z. Li, Y.H. Ma, L. Tao, D.Y. Zheng, J.F. Zhu, H. Li, R.G. Li, Q.H. Yang, Appl. Catal. B Environ. 262 (2020) 118271.
    [26]
    C.F. Holder, R.E. Schaak, ACS Nano 13 (2019) 7359–7365.
    [27]
    S.Z. Yang, W.H. Hu, X. Zhang, P.L. He, B. Pattengale, C.M. Liu, M. Cendejas, I. Hermans, X.Y. Zhang, J. Zhang, J.E. Huang, J. Am. Chem. Soc. 140 (2018) 14614–14618.
    [28]
    F. Ahangaran, A. Hassanzadeh, S. Nouri, Int. Nano Lett. 3 (2013) 23.
    [29]
    E. Andris, R. Navrátil, J. Jašík, G. Sabenya, M. Costas, M. Srnec, J. Roithová, Chem. Eur. J. 24 (2018) 5078–5081.
    [30]
    M. Kim, J.M. Yoo, C.Y. Ahn, J.H. Jang, Y.J. Son, H. Shin, J. Kang, Y.S. Kang, S.J. Yoo, K.S. Lee, Y.E. Sung, ChemCatChem 11 (2019) 5982–5988.
    [31]
    M. Devi, S. Ganguly, B. Bhuyan, S.S. Dhar, S. Vadivel, Eur. J. Inorg. Chem. 44 (2018) 4819–4825.
    [32]
    J.C. Colmenares, W. Ouyang, M. Ojeda, E. Kuna, O. Chernyayeva, D. Lisovytskiy, S. De, R. Luque, A.M. Balu, Appl. Catal. B Environ. 183 (2016) 107–112.
    [33]
    W. Huang, B.C. Ma, H. Lu, R. Li, L. Wang, K. Landfester, K.A.I. Zhang, ACS Catal. 7 (2017) 5438–5442.
    [34]
    L.C. Bai, F. Li, Y. Wang, H. Li, X.J. Jiang, L.C. Sun, Chem. Commun. 52 (2016) 9711–9714.
    [35]
    H. Zheng, Z.H. Wei, X.Q. Hu, J. Xu, B. Xue, ChemistrySelect 4 (2019) 5470–5475.
    [36]
    L.J. Shen, S.J. Liang, W.M. Wu, R.W. Liang, L. Wu, J. Mater. Chem. A 1 (2013) 11473–11482.
    [37]
    Y.Z. Chen, Z.U. Wang, H.W. Wang, J.L. Lu, S.H. Yu, H.L. Jiang, J. Am. Chem. Soc. 139 (2017) 2035–2044.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (137) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return