Volume 7 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Mingzhao Xu, Lifei Liu, Jianling Zhang, Fanyu Zhang, Gang Chen, Qiang Wan, Yufei Sha, Xiuyan Cheng, Zhuizhui Su. Ferric acetylacetonate/covalent organic framework composite for high performance photocatalytic oxidation. Green Energy&Environment, 2022, 7(6): 1281-1288. doi: 10.1016/j.gee.2021.02.001
Citation: Mingzhao Xu, Lifei Liu, Jianling Zhang, Fanyu Zhang, Gang Chen, Qiang Wan, Yufei Sha, Xiuyan Cheng, Zhuizhui Su. Ferric acetylacetonate/covalent organic framework composite for high performance photocatalytic oxidation. Green Energy&Environment, 2022, 7(6): 1281-1288. doi: 10.1016/j.gee.2021.02.001

Ferric acetylacetonate/covalent organic framework composite for high performance photocatalytic oxidation

doi: 10.1016/j.gee.2021.02.001
  • Ferric acetylacetonate/covalent organic framework (Fe(acac)3/COF) composite was synthesized by interfacial polymerization method at room temperature. The crystal structure, morphology and porosity property of the composite were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope and nitrogen adsorption. The interaction between Fe(acac)3 and COF was investigated by Fourier transform infrared spectra and X-ray photoelectron spectroscopy. The Fe(acac)3/COF composite was used as a photocatalyst for the oxidation of benzyl alcohol under mild conditions. It exhibits high activity and selectivity for the reaction, of which the mechanism was investigated by determining its photoelectric properties. The Fe(acac)3/COF catalyst developed in this work has application potential in other photocatalytic reactions.

     

  • • A ferric acetylacetonate/covalent organic framework composite was synthesized using interfacial polymerization method. • The composite exhibits excellent light absorbance and transformation of photogenerated electron–hole pairs. • The composite shows high catalytic performance for the selective oxidation of benzyl alcohol under mild conditions.
  • loading
  • [1]
    X. Liu, S. Li, R. Mi, J. Mei, L.-M. Liu, L. Cao, W.-M. Lau, H. Liu, Appl. Energy 153 (2015) 32–40.
    [2]
    W.-H. Qu, Y.-Y. Xu, A.-H. Lu, X.-Q. Zhang, W.-C. Li, Bioresour. Technol. 189 (2015) 285–291.
    [3]
    M. Tebyetekerwa, I. Marriam, Z. Xu, S. Yang, H. Zhang, F. Zabihi, R. Jose, S. Peng, M. Zhu, S. Ramakrishna, Energy Environ. Sci. 12 (2019) 2148–2160.
    [4]
    J. Yan, L. Miao, H. Duan, D. Zhu, Y. Lv, W. Xiong, L. Li, L. Gan, M. Liu, Electrochim. Acta 358 (2020) 136899.
    [5]
    X. Li, X. Tian, T. Yang, Y. He, W. Liu, Y. Song, Z. Liu, ACS Sustain. Chem. Eng. 7 (2019) 5742–5750.
    [6]
    Z.-H. Chang, D.-Y. Feng, Z.-H. Huang, X.-X. Liu, Chem. Eng. J. 337 (2018) 552–559.
    [7]
    Y. Liu, X. Li, W. Shen, Y. Dai, W. Kou, W. Zheng, X. Jiang, G. He, Small 15 (2019) 1804737.
    [8]
    S. Wu, Y. Zhu, Sci. China Mater. 60 (2017) 25–38.
    [9]
    Q. Chen, X. Tan, Y. Liu, S. Liu, M. Li, Y. Gu, P. Zhang, S. Ye, Z. Yang, Y. Yang, J. Mater. Chem. A 8 (2020) 5773–5881.
    [10]
    W. Zhang, N. Lin, D. Liu, J. Xu, J. Sha, J. Yin, X. Tan, H. Yang, H. Lu, H. Lin, Energy 128 (2017) 618–625.
    [11]
    X. Chen, M. Chi, L. Xing, X. Xie, S. Liu, Y. Liang, M. Zheng, H. Hu, H. Dong, Y. Liu, S.P. Jiang, Y. Xiao, ACS Sustain. Chem. Eng. 7 (2019) 5845–5855.
    [12]
    G. Lin, R. Ma, Y. Zhou, Q. Liu, X. Dong, J. Wang, Electrochim. Acta 261 (2018) 49–57.
    [13]
    Y. Zhu, H. Hu, W. Li, X. Zhang, Carbon 45 (2007) 160–165.
    [14]
    Z. Sun, M. Zheng, H. Hu, H. Dong, Y. Liang, Y. Xiao, B. Lei, Y. Liu, Chem. Eng. J. 336 (2018) 550–561.
    [15]
    K. Wang, N. Zhao, S. Lei, R. Yan, X. Tian, J. Wang, Y. Song, D. Xu, Q. Guo, L. Liu, Electrochim. Acta 166 (2015) 1–11.
    [16]
    M. Yu, Y. Han, J. Li, L. Wang, Chem. Eng. J. 317 (2017) 493–502.
    [17]
    Z. Qiu, Y. Wang, X. Bi, T. Zhou, J. Zhou, J. Zhao, Z. Miao, W. Yi, P. Fu, S. Zhuo, J. Power Sources 376 (2018) 82–90.
    [18]
    H. Jia, J. Sun, X. Xie, K. Yin, L. Sun, Carbon 143 (2019) 309–317.
    [19]
    Z. Zhu, Y. Liu, Z. Ju, J. Luo, O. Sheng, J. Nai, T. Liu, Y. Zhou, Y. Wang, X. Tao, ACS Appl. Mater. Interfaces 11 (2019) 24205–24211.
    [20]
    E.Y.L. Teo, L. Muniandy, E.-P. Ng, F. Adam, A.R. Mohamed, R. Jose, K.F. Chong, Electrochim. Acta 192 (2016) 110–119.
    [21]
    A. Gopalakrishnan, S. Badhulika, Renew. Energy 161 (2020) 173–183.
    [22]
    Z. Bi, Q. Kong, Y. Cao, G. Sun, F. Su, X. Wei, X. Li, A. Ahmad, L. Xie, C.-M. Chen, J. Mater. Chem. A 7 (2019) 16028–16045.
    [23]
    J.S. Cha, S.H. Park, S.C. Jung, C. Ryu, J.K. Jeon, M.C. Shin, Y.K. Park, J. Ind. Eng. Chem. 40 (2016) 1–15.
    [24]
    Y. Sun, Z. Wang, Y. Liu, X. Meng, J. Qu, C. Liu, B. Qu, Energies 13 (2019) 21.
    [25]
    F. Yue, J. Zhang, C.M. Pedersen, Y. Wang, T. Zhao, P. Wang, Y. Liu, G. Qian, Y. Qiao, Chem. Eur. J. 2 (2017) 583–590.
    [26]
    S. Bi, W. Liu, C. Wang, H. Zhan, J. Environ. Chem. Eng 6 (2018) 5049–5052.
    [27]
    S.U.N. Yadong, S.U.N. Ran, J. Jianxin, Z.H.U. Liwei, Mod. Chem. Ind. 28 (2008) 48–52.
    [28]
    Y.-J. Feng, F. Li, X.-L. Wang, X.-M. Liu, L.-N. Zhang, Pedosphere 16 (2006) 668–672.
    [29]
    S.A. Ovalle-Serrano, C. Blanco-Tirado, M.Y. Combariza, Cellulose 25 (2018) 151–165.
    [30]
    R.Q. Zhong, D.T. Cui, Z.H. Ye, New Phytol. 221 (2019) 1703–1723.
    [31]
    S.P.S. Chundawat, G.T. Beckham, M.E. Himmel, B.E. Dale, J.M. Prausnitz, Annu. Rev. Cell Biol. 2 (2011) 121–145.
    [32]
    P. Senthamaraikannan, M. Kathiresan, Carbohydr. Polym. 186 (2018) 332–343.
    [33]
    H. Zabed, J.N. Sahu, A.N. Boyce, G. Faruq, Renew. Sustain. Energy Rev. 66 (2016) 751–774.
    [34]
    R. Vanholme, B. Demedts, K. Morreel, J. Ralph, W. Boerjan, Plant Physiol. 153 (2010) 895–905.
    [35]
    R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Chem. Soc. Rev. 40 (2011) 3941–3994.
    [36]
    X. Tian, X. Li, T. Yang, K. Wang, H. Wang, Y. Song, Z. Liu, Q. Guo, C. Chen, Electrochim. Acta 247 (2017) 1060–1071.
    [37]
    C. Long, X. Chen, L. Jiang, L. Zhi, Z. Fan, Nanomater. Energy 12 (2015) 141–151.
    [38]
    X. Tian, N. Zhao, Y. Song, K. Wang, D. Xu, X. Li, Q. Guo, L. Liu, Electrochim. Acta 185 (2015) 40–51.
    [39]
    N. Baccile, G. Laurent, F. Babonneau, F. Fayon, M.-M. Titirici, M. Antonietti, J. Chem. Phys. 113 (2009) 9644–9654.
    [40]
    C. Falco, F.P. Caballero, F. Babonneau, C. Gervais, G. Laurent, M.- M. Titirici, N. Baccile, Langmuir 27 (2011) 14460–14471.
    [41]
    W. Zhang, Y. Zou, C. Yu, W. Zhong, J. Power Sources 439 (2019) 227067.
    [42]
    R. Hossain, R.K. Nekouei, I. Mansuri, V. Sahajwalla, J. Energy Storage 33 (2021) 102113.
    [43]
    H. Liu, R. Liu, C. Xu, Y. Ren, D. Tang, C. Zhang, F. Li, X. Wei, R. Zhang, J. Power Sources 479 (2020) 228799.
    [44]
    J. Wu, R. Chandra, J. Saddler, Sustain. Energy Fuels 3 (2019) 227–236.
    [45]
    L. Yao, Q. Wu, P.X. Zhang, J.M. Zhang, D.R. Wang, Y.L. Li, X.Z. Ren, H.W. Mi, L.B. Deng, Z.J. Zheng, Adv. Mater. 30 (2018) 9.
    [46]
    N. Mcevoy, N. Peltekis, S. Kumar, E. Rezvani, H. Nolan, G.P. Keeley, W.J. Blau, G.S. Duesberg, Carbon 50 (2012) 1216–1226.
    [47]
    S.L.H. Rebelo, A. Guedes, M.E. Szefczyk, A.M. Pereira, J.P. Araujo, C. Freire, Phys. Chem. Chem. Phys. 18 (2016) 12784–12796.
    [48]
    J. Niu, R. Shao, J. Liang, M. Dou, Z. Li, Y. Huang, F. Wang, Nanomater. Energy 36 (2017) 322–330.
    [49]
    Z. Chen, X. Wang, B. Xue, W. Li, Z. Ding, X. Yang, J. Qiu, Z. Wang, Carbon 161 (2020) 432–444.
    [50]
    X. Tian, N. Zhao, K. Wang, D. Xu, Y. Song, Q. Guo, L. Liu, RSC Adv. 5 (2015) 40884–40891.
    [51]
    C. Ma, Y. Song, J. Shi, D. Zhang, X. Zhai, M. Zhong, Q. Guo, L. Liu, Carbon 51 (2013) 290–300.
    [52]
    K.A. Cychosz, R. Guillet-Nicolas, J. Garcia-Martinez, M. Thommes, Chem. Soc. Rev. 46 (2017) 389–414.
    [53]
    L. Xing, X. Chen, Z. Tan, M. Chi, W. Xie, J. Huang, Y. Liang, M. Zheng, H. Hu, H. Dong, Y. Liu, Y. Xiao, ACS Sustain. Chem. Eng. 7 (2019) 6601–6610.
    [54]
    G. Zhao, C. Chen, D. Yu, L. Sun, C. Yang, H. Zhang, Y. Sun, F. Besenbacher, M. Yu, Nanomater. Energy 47 (2018) 547–555.
    [55]
    G. Zhang, T. Guan, J. Qiao, J. Wang, K. Li, Energy Storage Mater. 26 (2020) 119–128.
    [56]
    G. Zhang, T. Guan, M. Cheng, Y. Wang, N. Xu, J. Qiao, F. Xu, Y. Wang, J. Wang, K. Li, J. Power Sources 448 (2020) 227446.
    [57]
    Y. Zhou, X. Ren, Y. Du, Y. Jiang, J. Wan, F. Ma, Electrochim. Acta 355 (2020) 136801.
    [58]
    Y. Zhou, X. Ren, M. Song, Y. Du, J. Wan, G. Wu, F. Ma, Renew. Energy 153 (2020) 1005–1015.
    [59]
    Z. Shang, X. An, H. Zhang, M. Shen, F. Baker, Y. Liu, L. Liu, J. Yang, H. Cao, Q. Xu, H. Liu, Y. Ni, Carbon 161 (2020) 62–70.
    [60]
    T. Shang, Y. Xu, P. Li, J. Han, Z. Wu, Y. Tao, Q.-H. Yang, Nanomater. Energy 70 (2020) 104531.
    [61]
    M. Wu, P. Ai, M. Tan, B. Jiang, Y. Li, J. Zheng, W. Wu, Z. Li, Q. Zhang, X. He, Chem. Eng. J. 245 (2014) 166–172.
    [62]
    Z. Chen, X. Wang, Z. Ding, Q. Wei, Z. Wang, X. Yang, J. Qiu, ChemSusChem 12 (2019) 5099–5110.
    [63]
    L. Jiang, J. Yan, L. Hao, R. Xue, G. Sun, B. Yi, Carbon 56 (2013) 146–154.
    [64]
    M. Wang, J. Yang, S. Liu, C. Hu, J. Qiu, ACS Appl. Energy Mater. 3 (2020) 6977–6984.
    [65]
    Z.-F. Li, H. Zhang, Q. Liu, L. Sun, L. Stanciu, J. Xie, ACS Appl. Mater. Interfaces 5 (2013) 2685–2691.
    [66]
    N.F. Sylla, N.M. Ndiaye, B.D. Ngom, D. Momodu, M.J. Madito, B.K. Mutuma, N. Manyala, Sci. Rep. 9 (2019) 13673.
    [67]
    B. Evanko, S.W. Boettcher, S.J. Yoo, G.D. Stucky, ACS Energy Lett. 2 (2017) 2581–2590.
    [68]
    S.T. Senthilkumar, R.K. Selvan, Y.S. Lee, J.S. Melo, J. Mater. Chem. A 1 (2013) 1086–1095.
    [69]
    G. Lota, K. Fic, E. Frackowiak, Electrochem. Commun. 13 (2011) 38–41.
    [70]
    K.V. Sankar, R. Kalai Selvan, Carbon 90 (2015) 260–273.
    [71]
    L. Sheng, L. Jiang, T. Wei, Z. Liu, Z. Fan, Adv. Energy Mater. 7 (2017) 1700668.
    [72]
    K. Jayaramulu, D.P. Dubal, B. Nagar, V. Ranc, O. Tomanec, M. Petr, K.K.R. Datta, R. Zboril, P. Gómez-Romero, R.A. Fischer, Adv. Mater. 30 (2018) 1705789.
    [73]
    J. Lee, P. Srimuk, S. Fleischmann, A. Ridder, M. Zeiger, V. Presser, J. Mater. Chem. A 5 (2017) 12520–12527.
    [74]
    X. Wang, R.S. Chandrabose, S.-E. Chun, T. Zhang, B. Evanko, Z. Jian, S.W. Boettcher, G.D. Stucky, X. Ji, ACS Appl. Mater. Interfaces 7 (2015) 19978–19985.
    [75]
    X. Zhang, X. Cui, C.-H. Lu, H. Li, Q. Zhang, C. He, Y. Yang, Chem. Eng. J. 401 (2020) 126031.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (192) PDF downloads(27) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return