Volume 7 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Jing Zhang, Chithra Asokan, Gregory Zakem, Phillip Christopher, J. Will Medlin. Enhancing sintering resistance of atomically dispersed catalysts in reducing environments with organic monolayers. Green Energy&Environment, 2022, 7(6): 1263-1269. doi: 10.1016/j.gee.2021.01.022
Citation: Jing Zhang, Chithra Asokan, Gregory Zakem, Phillip Christopher, J. Will Medlin. Enhancing sintering resistance of atomically dispersed catalysts in reducing environments with organic monolayers. Green Energy&Environment, 2022, 7(6): 1263-1269. doi: 10.1016/j.gee.2021.01.022

Enhancing sintering resistance of atomically dispersed catalysts in reducing environments with organic monolayers

doi: 10.1016/j.gee.2021.01.022
  • Atomically dispersed precious metal catalysts maximize atom efficiency and exhibit unique reactivity. However, they are susceptible to sintering. Catalytic reactions occurring in reducing environments tend to result in atomically dispersed metals sintering at lower temperatures than in oxidative or inert atmospheres due to the formation of mobile metal-H or metal-CO complexes. Here, we develop a new approach to mitigate sintering of oxide supported atomically dispersed metals in a reducing atmosphere using organophosphonate self-assembled monolayers (SAMs). We demonstrate this for the case of atomically dispersed Rh on Al2O3 and TiO2 using a combination of CO probe molecule FTIR, temperature programmed desorption, and alkene hydrogenation rate measurements. Evidence suggests that SAM functionalization of the oxide provides physical diffusion barriers for the metal and weakens the interactions between the reducing gas and metal, thereby discouraging the adsorbate-promoted diffusion of metal atoms on oxide supports. Our results show that support functionalization by organic species can provide improved resistance to sintering of atomically dispersed metals with maintained catalytic reactivity.

     

  • loading
  • [1]
    H. Pan, Y.-S. Hu, L. Chen, Energy Environ. Sci. 6 (2013) 2338–2360.
    [2]
    M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Adv. Funct. Mater. 23 (2013) 947–958.
    [3]
    J.B. Goodenough, J. Solid State Electrochem. 16 (2012) 2019–2029.
    [4]
    N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, Nat. Mater. 11 (2012) 512–517.
    [5]
    Y.X. Wang, L.G. Wang, H. Zhu, J. Chu, Y.J. Fang, L.N. Wu, L. Huang, Y. Ren, C.J. Sun, Q. Liu, X.P. Ai, H.X. Yang, Y.L. Cao, Adv. Funct. Mater. 30 (2020) 1910327.
    [6]
    X. Li, S. Guo, F. Qiu, L. Wang, M. Ishida, H. Zhou, J. Mater. Chem. A 7 (2019) 4395–4399.
    [7]
    G. Yan, S. Mariyappan, G. Rousse, Q. Jacquet, M. Deschamps, R. David, B. Mirvaux, J.W. Freeland, J.M. Tarascon, Nat. Commun. 10 (2019) 585 1–58512.
    [8]
    J. Zhang, X. Zhou, Y. Wang, J. Qian, F. Zhong, X. Feng, W. Chen, X. Ai, H. Yang, Y. Cao, Small 15 (2019) 1903723.
    [9]
    Y. Xu, Q. Wei, C. Xu, Q. Li, Q. An, P. Zhang, J. Sheng, L. Zhou, L. Mai, Adv. Energy Mater. 6 (2016) 1600389.
    [10]
    X. Ge, X. Li, Z. Wang, H. Guo, G. Yan, X. Wu, J. Wang, Chem. Eng. J. 357 (2019) 458–462.
    [11]
    Y. Xu, S. Zheng, H. Tang, X. Guo, H. Xue, H. Pang, Energy Stotage Mater. 9 (2017) 11–30.
    [12]
    Y. Liu, Y. Qiao, W. Zhang, Z. Li, X. Ji, L. Miao, L. Yuan, X. Hu, Y. Huang, Nanomater. Energy 12 (2015) 386–393.
    [13]
    W.J. Li, C. Han, G. Cheng, S.L. Chou, H.K. Liu, S.X. Dou, Small 15 (2019) 1900470.
    [14]
    Y. Fang, L. Xiao, X. Ai, Y. Cao, H. Yang, Adv. Mater. 27 (2015) 5895–5900.
    [15]
    Z. Jian, W. Han, X. Lu, H. Yang, Y.-S. Hu, J. Zhou, Z. Zhou, J. Li, W. Chen, D. Chen, L. Chen, Adv. Energy Mater. 3 (2013) 156–160.
    [16]
    C. Zhu, C. Wu, C.-C. Chen, P. Kopold, P.A. van Aken, J. Maier, Y. Yu, Chem. Mater. 29 (2017) 5207–5215.
    [17]
    W. Li, K. Wang, S. Cheng, K. Jiang, Energy Stotage Mater. 15 (2018) 14–21.
    [18]
    Y. Yin, F. Xiong, C. Pei, Y. Xu, Q. An, S. Tan, Z. Zhuang, J. Sheng, Q. Li, L. Mai, Nanomater. Energy 41 (2017) 452–459.
    [19]
    Q. Liu, X. Meng, Z. Wei, D. Wang, Y. Gao, Y. Wei, F. Du, G. Chen, ACS Appl. Mater. Interfaces 8 (2016) 31709–31715.
    [20]
    Y. Yao, L. Zhang, Y. Gao, G. Chen, C. Wang, F. Du, RSC Adv. 8 (2018) 2958–2962.
    [21]
    C. Zhu, K. Song, P.A. van Aken, J. Maier, Y. Yu, Nano Lett. 14 (2014) 2175–2180.
    [22]
    H. Yi, M. Ling, W. Xu, X. Li, Q. Zheng, H. Zhang, Nanomater. Energy 47 (2018) 340–352.
    [23]
    Y. Zhang, S. Guo, H. Xu, J. Mater. Chem. A 6 (2018) 4525–4534.
    [24]
    Y. Cai, X. Cao, Z. Luo, G. Fang, F. Liu, J. Zhou, A. Pan, S. Liang, Adv. Sci. 5 (2018) 1800680.
    [25]
    C. Shen, H. Long, G. Wang, W. Lu, L. Shao, K. Xie, J. Mater. Chem. A 6 (2018) 6007–6014.
    [26]
    Y. Fang, Q. Liu, L. Xiao, Y. Rong, Y. Liu, Z. Chen, X. Ai, Y. Cao, H. Yang, J. Xie, C. Sun, X. Zhang, B. Aoun, X. Xing, X. Xiao, Y. Ren, Inside Chem. 4 (2018) 1167–1180.
    [27]
    Y. Fang, J. Zhang, F. Zhong, X. Feng, W. Chen, X. Ai, H. Yang, Y. Cao, CCS Chem. (2020) 2428–2436.
    [28]
    M. Bianchini, N. Brisset, F. Fauth, F. Weill, E. Elkaim, E. Suard, C. Masquelier, L. Croguennec, Chem. Mater. 26 (2014) 4238–4247.
    [29]
    S.-J. Lim, D.-W. Han, D.-H. Nam, K.-S. Hong, J.-Y. Eom, W.-H. Ryu, H.-S. Kwon, J. Mater. Chem. A 2 (2014) 19623–19632.
    [30]
    M. Bianchini, F. Fauth, N. Brisset, F. Weill, E. Suard, C. Masquelier, L. Croguennec, Chem. Mater. 27 (2015) 3009–3020.
    [31]
    X. Lin, J. Huang, H. Tan, J. Huang, B. Zhang, Energy Storage Mater. 16 (2019) 97–101.
    [32]
    Y.L. Cao, L.F. Xiao, W. Wang, D.W. Choi, Z.M. Nie, J.G. Yu, L.V. Saraf, Z.G. Yang, J. Liu, Adv. Mater. 23 (2011) 3155–3160.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (141) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return