Volume 7 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Xiaoying Guo, Xusheng Zhang, Yingxiong Wang, Xiaodong Tian, Yan Qiao. Converting furfural residue wastes to carbon materials for high performance supercapacitor. Green Energy&Environment, 2022, 7(6): 1270-1280. doi: 10.1016/j.gee.2021.01.021
Citation: Xiaoying Guo, Xusheng Zhang, Yingxiong Wang, Xiaodong Tian, Yan Qiao. Converting furfural residue wastes to carbon materials for high performance supercapacitor. Green Energy&Environment, 2022, 7(6): 1270-1280. doi: 10.1016/j.gee.2021.01.021

Converting furfural residue wastes to carbon materials for high performance supercapacitor

doi: 10.1016/j.gee.2021.01.021
  • Sustainable development based on the value-added utilization of furfural residues (FRs) is an effective way to achieve a profitable circular economy. This comprehensive work highlights the potential of FRs as precursor to prepare porous carbons for high performance supercapacitors (SCs). To improve the electrochemical performance of FR-based carbon materials, a facile route based on methanol pretreatment coupled with pre-carbonization and followed KOH activation is proposed. More defects could be obtained after methanol treatment, which is incline to optimize textural structure. The activated methanol treated FR-based carbon materials (AFRMs) possess high specific surface area (1753.5 m2 g-1), large pore volume (0.85 cm3 g-1), interconnected micro/mesoporous structure, which endow the AFRMs with good electrochemical performance in half-cell (326.1 F g-1 at 0.1 A g-1, 189.4 F g-1 at 50 A g-1 in 6 mol L-1 KOH). The constructed symmetric SCs based on KOH, KOH–K3Fe(CN)6 and KOH-KI electrolyte deliver energy density up to 8.9, 9.9 and 10.6 Wh kg-1 with a capacitance retention of over 86% after 10,000 cycles. Furthermore, the self-discharge can be restrained by the addition of K3Fe(CN)6 and KI in KOH electrolyte. This study provides an effective approach for high-valued utilization of FR waste.

     

  • • The application of furfural residue wastes in energy storage device is proposed. • Facile route of methanol treatment is favorable to optimize pore size distribution. • As-obtained activated carbon exhibits good performance in different electrolytes. • The device assembled by redox electrolyte shows boosted energy density and retention.
  • loading
  • [1]
    J. Liu, ACS Catal. 7 (2017) 34–59.
    [2]
    L. DeRita, S. Dai, K. Lopez-Zepeda, N. Pham, G.W. Graham, X. Pan, P. Christopher, J. Am. Chem. Soc. 139 (2017) 14150–14165.
    [3]
    C. Carrillo, T.R. Johns, H. Xiong, A. Delariva, S.R. Challa, R.S. Goeke, K. Artyushkova, W. Li, C.H. Kim, A.K. Datye, J. Phys. Chem. Lett. 5 (2014) 2089–2093.
    [4]
    T.W. Hansen, A.T. Delariva, S.R. Challa, A.K. Datye, Acc. Chem. Res. 46 (2013) 1720–1730.
    [5]
    S. Horch, H.T. Lorensen, S. Helveg, E. Lægsgaard, I. Stensgaard, K.W. Jacobsen, J.K. Nørskov, F. Besenbacher, Nature 398 (1999) 134–136.
    [6]
    G.S. Parkinson, Z. Novotny, G. Argentero, M. Schmid, J. Pavelec, R. Kosak, P. Blaha, U. Diebold, Nat. Mater. 12 (2013) 724–728.
    [7]
    M. Moliner, J.E. Gabay, C.E. Kliewer, R.T. Carr, J. Guzman, G.L. Casty, P. Serna, A. Corma, J. Am. Chem. Soc. 138 (2016) 15743–15750.
    [8]
    J.C. Matsubu, V.N. Yang, P. Christopher, J. Am. Chem. Soc. 137 (2015) 3076–3084.
    [9]
    J. Lu, B. Fu, M.C. Kung, G. Xiao, J.W. Elam, H.H. Kung, P.C. Stair, Science 335 (2012) 1205–1208.
    [10]
    H. Feng, J. Lu, P.C. Stair, J.W. Elam, Catal. Lett. 141 (2011) 512–517.
    [11]
    X. Liang, J. Li, M. Yu, C.N. McMurray, J.L. Falconer, A.W. Weimer, ACS Catal. 1 (2011) 1162–1165.
    [12]
    T.D. Gould, A. Izar, A.W. Weimer, J.L. Falconer, J.W. Medlin, ACS Catal. 4 (2014) 2714–2717.
    [13]
    Z. Ma, S. Brown, J.Y. Howe, S.H. Overbury, S. Dai, J. Phys. Chem. C 112 (2008) 9448–9457.
    [14]
    G. Budroni, A. Corma, Angew. Chem. Int. Ed. 45 (2006) 3328–3331.
    [15]
    C.W. Chiang, A. Wang, B.Z. Wan, C.Y. Mou, J. Phys. Chem. B 109 (2005) 18042–18047.
    [16]
    Y. Li, S. Liu, L. Yao, W. Ji, C.T. Au, Catal. Commun. 11 (2010) 368–372.
    [17]
    L. Liu, U. Díaz, R. Arenal, G. Agostini, P. Concepción, A. Corma, Nat. Mater. 16 (2017) 132–138.
    [18]
    G. Vilé, D. Albani, M. Nachtegaal, Z. Chen, D. Dontsova, M. Antonietti, N.López,J.Pérez-Ramírez,Angew.Chem.Int.Ed.54(2015)11265–11269.
    [19]
    J. Zhang, B. Wang, E. Nikolla, J.W. Medlin, Angew. Chem. Int. Ed. 56 (2017) 6594–6598.
    [20]
    J. Qi, J. Chen, G. Li, S. Li, Y. Gao, Z. Tang, Energy Environ. Sci. 5 (2012) 8937–8941.
    [21]
    J. Zhang, L. Wang, Y. Shao, Y. Wang, B.C. Gates, F.S. Xiao, Angew. Chem. Int. Ed. 56 (2017) 9747–9751.
    [22]
    M. Cargnello, J.J. Delgado Jaén, J.C. Hernández Garrido, K. Bakhmutsky, T. Montini, J.J. Calvino Gámez, R.J. Gorte, P. Fornasiero, Science 337 (2012) 713–717.
    [23]
    K. An, Q. Zhang, S. Alayoglu, N. Musselwhite, J.Y. Shin, G.A. Somorjai, Nano Lett. 14 (2014) 4907–4912.
    [24]
    S.H. Joo, J.Y. Park, C.K. Tsung, Y. Yamada, P. Yang, G.A. Somorjai, Nat. Mater. 8 (2009) 126–131.
    [25]
    B.K. Min, W.T. Wallace, D.W. Goodman, J. Phys. Chem. B 108 (2004) 14609–14615.
    [26]
    W. Yan, S.M. Mahurin, Z. Pan, S.H. Overbury, S. Dai, J. Am. Chem. Soc. 127 (2005) 10480–10481.
    [27]
    J. Jones, H. Xiong, A.T. DeLaRiva, E.J. Peterson, H. Pham, S.R. Challa, G. Qi, S. Oh, M.H. Wiebenga, X.I.P. Hernández, Y. Wang, A.K. Datye, Science 353 (2016) 150–154.
    [28]
    M. Yang, J. Liu, S. Lee, B. Zugic, J. Huang, L.F. Allard, M. Flytzani Stephanopoulos, J. Am. Chem. Soc. 137 (2015) 3470–3473.
    [29]
    Z. Novotný, G. Argentero, Z. Wang, M. Schmid, U. Diebold, G.S. Parkinson, Phys. Rev. Lett. 108 (2012) 216103.
    [30]
    B. Qiao, J.X. Liang, A. Wang, C.Q. Xu, J. Li, T. Zhang, J.J. Liu, Nano Res. 8 (2015) 2913–2924.
    [31]
    M. Flytzani Stephanopoulos, Acc. Chem. Res. 47 (2014) 783–792.
    [32]
    Z. Zhang, Y. Zhu, H. Asakura, B. Zhang, J. Zhang, M. Zhou, Y. Han, T. Tanaka, A. Wang, T. Zhang, N. Yan, Nat. Commun. 8 (2017) 16100.
    [33]
    F. Dvořák, M.F. Camellone, A. Tovt, N.D. Tran, F.R. Negreiros, M. Vorokhta, T. Skála, I. Matolínová, J. Mysliveček, V. Matolín, S. Fabris, Nat. Commun. 7 (2016) 10801.
    [34]
    E.J. Peterson, A.T. DeLaRiva, S. Lin, R.S. Johnson, H. Guo, J.T. Miller, J.H. Kwak, C.H.F. Peden, B. Kiefer, L.F. Allard, F.H. Ribeiro, A.K. Datye, Nat. Commun. 5 (2014) 4885.
    [35]
    J. Zhang, S. Deo, M.J. Janik, J.W. Medlin, J. Am. Chem. Soc. 142 (2020) 5184–5193.
    [36]
    J. Zhang, L.D. Ellis, B. Wang, M.J. Dzara, C. Sievers, S. Pylypenko, E. Nikolla, J.W. Medlin, Nat. Catal. 1 (2018) 148–155.
    [37]
    L.D. Ellis, R.M. Trottier, C.B. Musgrave, D.K. Schwartz, J.W. Medlin, ACS Catal. 7 (2017) 8351–8357.
    [38]
    I. Ro, M. Xu, G.W. Graham, X. Pan, P. Christopher, ACS Catal. 9 (2019) 10899–10912.
    [39]
    C. Asokan, Y. Yang, A. Dang, A. Getsoian, P. Christopher, ACS Catal. 10 (2020) 5217–5222.
    [40]
    A. Suzuki, Y. Inada, A. Yamaguchi, T. Chihara, M. Yuasa, M. Nomura, Y. Iwasawa, Angew. Chem. Int. Ed. 42 (2003) 4795–4799.
    [41]
    P.B. Panayotov, J.T. Yates, J. Am. Chem. Soc. 110 (1988) 2074–2081.
    [42]
    B.R. Goldsmith, E.D. Sanderson, R. Ouyang, W.X. Li, J. Phys. Chem. C 118 (2014) 9588–9597.
    [43]
    C. Asokan, L. DeRita, P. Christopher, J. Catal. 38 (2017) 1473–1480.
    [44]
    T.M. Duncan, J.T. Yates, R.W. Vaughan, J. Chem. Phys. 73 (1980) 975–985.
    [45]
    A.C. Yang, C.W. Garland, J. Phys. Chem. 61 (1957) 1504–1512.
    [46]
    J.T. Yates, T.M. Duncan, S.D. Worley, R.W. Vaughan, J. Chem. Phys. 70 (1979) 1219–1224.
    [47]
    R.R. Cavanagh, J.T. Yates, J. Chem. Phys. 74 (1981) 4150–4155.
    [48]
    J. Resasco, F. Yang, T. Mou, B. Wang, P. Christopher, D.E. Resasco, ACS Catal. 10 (2020) 595–603.
    [49]
    H. Guan, J. Lin, B. Qiao, S. Miao, A. Wang, X. Wang, T. Zhang, AIChE J. 63 (2017) 2081–2088.
    [50]
    R. Zhou, Y. Liu, Y. Lyu, X. Song, C. Zheng, S. Feng, Z. Jiang, Y. Ding, J. Catal. 369 (2019) 249–256.
    [51]
    J. Qi, P. Christopher, Ind. Eng. Chem. Res. 58 (2019) 12632–12641.
    [52]
    A.H. Jenkins, C.B. Musgrave, J.W. Medlin, ACS Appl. Mater. Interfaces 11 (2019) 41289–41296.
    [53]
    S. Ding, Y. Guo, M.J. Hülsey, B. Zhang, H. Asakura, L. Liu, Y. Han, M. Gao, J. Hasegawa, T. Zhang, N. Yan, Inside Chem. 5 (2019) 3012–3014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (243) PDF downloads(22) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return