Volume 7 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Zhe Hong, Guoqing Zhao, Fangtao Huang, Xiaoxia Wang, Zhirong Zhu. Enhancing the side-chain alkylation of toluene with methanol to styrene over the Cs-modified X zeolite by the assistance of basic picoline as a co-catalyst. Green Energy&Environment, 2022, 7(6): 1241-1252. doi: 10.1016/j.gee.2021.01.020
Citation: Zhe Hong, Guoqing Zhao, Fangtao Huang, Xiaoxia Wang, Zhirong Zhu. Enhancing the side-chain alkylation of toluene with methanol to styrene over the Cs-modified X zeolite by the assistance of basic picoline as a co-catalyst. Green Energy&Environment, 2022, 7(6): 1241-1252. doi: 10.1016/j.gee.2021.01.020

Enhancing the side-chain alkylation of toluene with methanol to styrene over the Cs-modified X zeolite by the assistance of basic picoline as a co-catalyst

doi: 10.1016/j.gee.2021.01.020
  • Side-chain alkylation of toluene with methanol is a green pathway to realize the one-step production of styrene under mild conditions, but the low selectivity of styrene is difficult to be improved with by-products of ethylbenzene and xylene. In this study, a new way is introduced to improve the catalytic performance by means of assisting basic compounds as co-catalysts during the toluene side-chain alkylation with methanol to styrene. As a result, high activity of side-chain alkylation appears over the basic Cs-modified zeolite catalysts prepared by ion exchange and impregnation methods. This high performance should be mainly attributed to two co-catalysis actions: (1) the promotion of basic compounds for methanol dehydrogenation to formaldehyde as the intermediate for side-chain alkylation; (2) the suppression of the styrene transfer hydrogenation on basic Cs-modified zeolites to avoid the formation of ethylbenzene. Especially for Cs2O/CsX-ex catalyst, the addition of 2% mol/mol 2-picoline in reaction mixture could achieve both 12.3% toluene conversion and 84.1% styrene selectivity. Whereas the higher concentration of 2-picoline (>6% mol/mol) caused an inhibition to the catalytic activity because the excessive basic compound poisoned the combined acid-base pathway required for the side-chain alkylation process. In addition, two possible side-chain alkylation reaction routes on Cs-modified zeolite under the different 2-picoline absorption were described.

     

  • • The addition of suitable amount of basic picoline facilitated the activity. • The Cs-modified X exhibited strong base sites and weak acid sites. • The reaction routes under different 2-picoline concentration are proposed.
    Tel./fax: +86 21–65982563.
  • loading
  • [1]
    W. Luo, H. Xue, Fullerenes, Nanotub. Carbon Nanostruct. 27 (2019) 189–197.
    [2]
    D. Zhou, H. Lin, F. Zhang, H. Niu, L. Cui, Q. Wang, F. Qu, Electrocim. Acta 161 (2015) 427–435.
    [3]
    J. Acharya, T.H. Ko, M.K. Seo, M.S. Khil, H.Y. Kim, B.S. Kim, ACS Appl. Energy Mater. 3 (2020) 7383–7396.
    [4]
    S. Wang, Y. Shao, W. Liu, Y. Wu, X. Hao, J. Mater. Chem. A 6 (2018) 13215–13224.
    [5]
    G. zhu, C. Xi, M. Shen, C. Bao, J. Zhu, ACS Appl. Mater. Interfaces 6 (2014) 17208–17214.
    [6]
    Y. Ma, X. Zhang, Z. Liang, C. Wang, Y. Sui, B. Zheng, Y. Ye, W. Ma, Q. Zhao, C. Qin, Electrocim. Acta 337 (2020) 135800.
    [7]
    Y. Wang, Y. Liu, D. Wang, C. Wang, L. Guo, T. Yi, Appl. Surf. Sci. 506 (2020) 145014.
    [8]
    C. Long, M. Zheng, Y. Xiao, B. Lei, H. Dong, H. Zhang, H. Hu, Y. Liu, ACS Appl. Mater. Interfaces 7 (2015) 24419–24429.
    [9]
    H. Li, H. Xuan, Y. Guan, G. Zhang, R. Wang, X. Liang, Z. Xie, P. Han, Y. Wu, Electrocim. Acta 345 (2020) 136260.
    [10]
    W. Fu, E. Zhao, X. Ren, A. Magasinski, G. Yushin, Adv. Energy Mater. 8 (2018) 1703454.
    [11]
    A. Ye, Q. Zhu, X. Zhang, Z. Yang, ACS Appl. Energy Mater. 3 (2020) 3082–3091.
    [12]
    G. Lou, Y. Wu, X. Zhu, Y. Lu, S. Yu, C. Yang, H. Chen, C. Guan, L. Li, Z. Shen, ACS Appl. Mater. Interfaces 10 (2018) 42503–42512.
    [13]
    D. Zhou, R. Zhou, C. Chen, W. Yee, J. Kong, G. Ding, X. Lu, J. Phys. Chem. B 117 (2013) 7783–7789.
    [14]
    Z. Zhang, K. Chi, F. Xiao, S. Wang, J. Mater. Chem. A 3 (2015) 12828–12835.
    [15]
    T.H. Ko, D. Lei, S. Balasubramaniam, M.K. Seo, Y.S. Chung, H.Y. Kim, B.S. Kim, Electrochim. Acta 247 (2017) 524–534.
    [16]
    W. Ma, S. Chen, S. Yang, W. Chen, Y. Cheng, Y. Guo, S. Peng, S. Ramakrishna, M. Zhu, J. Power Sources 306 (2016) 481–488.
    [17]
    G.M. Tomboc, H. Kim, Electrochim. Acta 318 (2019) 392–404.
    [18]
    G. Zhang, X.W. Lou, Sci. Rep. 3 (2013) 1470.
    [19]
    N. Zaho, H. Fan, M. Zhang, J. Ma, W. Zhang, C. Wang, H. Li, X. Jiang, X. Cao, Electrochim. Acta 321 (2019) 134681.
    [20]
    C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, X.W. Lou, Adv. Funct. Mater. 26 (2012) 4592–4597.
    [21]
    F. Zou, X. Hu, Z. Li, L. Qie, C. Hu, R. zeng, Y. jiang, Y. Huang, Adv. Mater. 26 (2014) 6622–6628.
    [22]
    J. Yao, J. Yan, Y. Huang, Y. Li, S. Xaio, J. Xiao, Front. Chem. 6 (2018) 442.
    [23]
    J.Y. Park, T.H. Ko, S. Balasubramaniam, M.K. Seo, M.S. Khil, H.Y. Kim, B.S. Kim, Ceram. Int. 45 (2019) 13099–13111.
    [24]
    J. Sun, W. Wang, D. Yu, J. Electron. Mater. 48 (2019) 3833–3843.
    [25]
    D. Lei, X.D. Li, M.K. Seo, M.S. Khil, H.Y. Kim, B.S. Kim, Polymer 132 (2017) 31–40.
    [26]
    L. Xu, L. Zhang, B. Cheng, J. Yu, Carbon 152 (2019) 652–660.
    [27]
    B. Qin, Q. Wang, X. Zhang, X. Xie, L. Jin, Q. Cao, Electrochim. Acta 283 (2018) 655–663.
    [28]
    Z. Shi, C. Chong, J. Wang, C. Wang, X. Yu, Mater. Lett. 159 (2015) 341–344.
    [29]
    Y. Wnag, N. Xiao, Z. Wang, Y. Tang, H. Li, M. Yu, C. Liu, Y. zhou, J. Qiu, Carbon 135 (2018) 187–197.
    [30]
    K.S. Ranjith, C.H. Kwak, J.U. Hwang, S.M. Ghoreishian, G.S.R. Raju, Y.S. Huh, J.S. Im, Y.K. Han, Electrochim. Acta 332 (2020) 135494.
    [31]
    C. Liu, K. Lafdi, J. Appl. Polym. Sci. 134 (2017) 45388.
    [32]
    J. Han, J.S. Chae, J.C. Kim, K.C. Roh, Carbon 163 (2020) 402–407.
    [33]
    W. Qian, X. Li, X. Zhu, Z. Hu, X. Zhang, G. Luo, H. Yao, RSC Adv. 10 (2020) 8172–8180.
    [34]
    N.C. Abeykoon, J.S. Bonso, J.P. Ferraris, RSC Adv. 5 (2015) 19865–19873.
    [35]
    F. Agend, N. Naderi, R. Fareghi-Alamdari, J. Appl. Polym. Sci. 106 (2007) 255–259.
    [36]
    H. Liu, S. Zhang, J. Yang, M. Ji, J. Yu, M. Wang, X. Chai, B. Yang, C. Zhu, J. Xu, Polymers 11 (2019) 1150.
    [37]
    O. Zabihi, S. Shafei, S.M. Fakhrhoseini, M. Ahmadi, H.A. Nazarloo, R. Stanger, Q.A. Tran, J. Lucas, T. Wall, M. Naebe, Materials 12 (2019) 1281.
    [38]
    Z. Yuan, L. Si, X. Zhu, J. Mater. Chem. A 3 (2015) 23403–23411.
    [39]
    M.S. Park, S.H. Cho, E.G. Jeong, Y.S. Lee, J. Ind. Eng. Chem. 23 (2015) 27–32.
    [40]
    S.S. Jayaseelan, T.H. Ko, S. Radhakrishnan, C.H. Yang, H.Y. Kim, B.S. Kim, Int. J. Hydrogen Energy 41 (2016) 13504–13512.
    [41]
    C.C. Lai, C.T. Lo, Electrochim. Acta 183 (2015) 85–93.
    [42]
    G. Nagaraju, G.S.R. Raju, Y.H. Ko, J.S. Yu, Nanoscale 8 (2016) 812–825.
    [43]
    Y. Lin, J. Zhang, M. Li, L. Wang, H. Yang, J. Alloys Compd. 726 (2017) 154–163.
    [44]
    F. Wen, Y. Zhang, X. Qian, J. Zhang, R. Hu, X. Hu, X. Wang, J. Zhu, ACS Appl. Mater. Interfaces 9 (2019) 44441–44451.
    [45]
    C. Long, M. Zheng, Y. Xiao, B. Lei, H. Dong, H. Zhang, Y. Liu, ACS Appl. Mater. Interfaces 7 (2015) 24419–24429.
    [46]
    X.W. Hu, S. Liu, B.T. Qu, X.Z. You, ACS Appl. Mater. Interfaces 7 (2015) 9972–9981.
    [47]
    Z.P. Chen, W.Q. Fang, B. Zhang, H.G. Yang, J. Alloys Compd. 550 (2013) 348–352.
    [48]
    H. Zhao, L. Wang, D. Jia, W. Xia, J. Li, Z. Guo, J. Mater. Chem. A 2 (2014) 9338–9344.
    [49]
    R.K. Gupta, J. Candler, S. Palchoudhury, K. Ramasamy, B.K. Gupta, Sci. Rep. 5 (2015) 15265.
    [50]
    D. Lee, Q.X. Xia, J.M. Yun, K.H. Kim, Appl. Surf. Sci. 433 (2018) 16–26.
    [51]
    C. Wang, E. Zhou, W. He, X. Deng, J. Huang, M. Ding, X. Wei, X. Liu, X. Xu, Nanomaterials 7 (2017) 41–64.
    [52]
    Y. Lan, H. Zhao, Y. Zong, X. Li, Y. Sun, Y. Du, Nanoscale 10 (2018) 11775–11781.
    [53]
    M.M. Vadiyaer, S.C. Bhise, S.K. Patil, S.A. Patil, D.K. Pawar, A.V. Ghule, S.S. Kolekar, RSC Adv. 5 (2015) 45935–45942.
    [54]
    H. Chen, J. Jiang, L. Zhang, T. Qi, D. Xia, H. Wan, J. Power Sources 248 (2014) 28–36.
    [55]
    B. Li, Z. Tian, H. Li, Z. Yang, Y. Wang, X. Wang, Electrochim. Acta 314 (2019) 32–39.
    [56]
    G. Zhang, T. Guan, M. Cheng, Y. Wang, N. Xu, J. Qiao, F. Xu, Y. Wang, J. Wang, K. Li, J. Power Sources 448 (2020) 227446.
    [57]
    J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C 111 (2007) 14925–14931.
    [58]
    X. Wang, Y. Fang, B. Shi, F. Huang, F. Rong, R. Que, Chem. Eng. J. 344 (2018) 311–319.
    [59]
    Y. Gao, B. Wu, J. Hei, D. Gao, X. Xu, Z. Wei, H. Wu, Electrochim. Acta 347 (2020) 136314.
    [60]
    J. Yao, Y. Li, J. Yan, J. Jiang, S. Xiao, Ionics 26 (2020) 4373–4380.
    [61]
    J. Acharya, T.H. Ko, J.G. Seong, M.K. Seo, M.S. Khil, H.Y. Kim, B.S. Kim, ACS Appl. Nano Mater. 3 (2020) 8679–8690.
    [62]
    K.H. Oh, G.S. Gund, H.S. Park, J. Mater. Chem. A 6 (2018) 22106–22114.
    [63]
    W. Yu, W. Lin, X. Shao, Z. Hu, R. Li, D. Yuan, J. Power Sources 272 (2014) 137–143.
    [64]
    J.N. Zhang, P. Liu, C. Jin, L.N. Jin, S.W. Bian, Q. Zhu, B. Wang, Electrochim. Acta 256 (2017) 90–99.
    [65]
    L. Feng, G. Li, S. Zhang, Y.X. Zhang, Ceram. Int. 43 (2011) 8321–8328.
    [66]
    W. Kong, C. Lu, W. Zhang, J. Pu, Z. Wang, J. Mater. Chem. A 3 (2015) 12452–12460.
    [67]
    R.S. Babu, R. Vinodh, A.L.F. de Barros, L.M. Samyn, K. prasanna, H.J. Kim, Chem. Eng. J. 366 (2019) 390–403.
    [68]
    X. Hao, J. Bi, W. Wang, W. Yan, X. Gao, X. Sun, R. Liu, J. Power Sources 451 (2020) 227802.
    [69]
    L. Li, H. Bi, S. Gai, F. He, P. Gao, Y. Dai, X. Zhang, D. Yang, M. Zhang, P. Yang, Sci. Rep. 7 (2017) 43116.
    [70]
    S. Yang, Z. Han, F. Zheng, J. Sun, Z. Qiao, X. Yang, L. Li, C. Li, X. Song, B. Cao, Carbon 134 (2018) 15–21.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (140) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return