Volume 7 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Chenyun Zhang, Bingwei Xin, Tingting Chen, Hao Ying, Zhonghao Li, Jingcheng Hao. Deep eutectic solvent strategy enables an octahedral Ni–Co precursor for creating high-performance NiCo2O4 catalyst toward oxygen evolution reaction. Green Energy&Environment, 2022, 7(6): 1217-1227. doi: 10.1016/j.gee.2021.01.017
Citation: Chenyun Zhang, Bingwei Xin, Tingting Chen, Hao Ying, Zhonghao Li, Jingcheng Hao. Deep eutectic solvent strategy enables an octahedral Ni–Co precursor for creating high-performance NiCo2O4 catalyst toward oxygen evolution reaction. Green Energy&Environment, 2022, 7(6): 1217-1227. doi: 10.1016/j.gee.2021.01.017

Deep eutectic solvent strategy enables an octahedral Ni–Co precursor for creating high-performance NiCo2O4 catalyst toward oxygen evolution reaction

doi: 10.1016/j.gee.2021.01.017
  • Deep eutectic solvents (DESs) have gained much attention in the fabrication of advanced nanoelectrocatalysts due to their amazing template function. However, their stabilizing function for easily hydrolyzed inorganic nanomaterials is rarely studied. Here, a DES-mediated strategy was reported to synthesize octahedral Ni–Co precursor (NiCo–NH3 complex), which could be directly transformed into NiCo2O4 nanooctahedrons after thermal decomposition. The NiCo–NH3 precursor in octahedral shape was achieved with the DES-mediated crystallization in the choline chloride (ChCl)/glycerol. The ChCl/glycerol DES not only tailored the morphology of the as-prepared precursor by template effect but also inhibited its hydrolysis, ensuring the successful fabrication of octahedral NiCo–NH3 complex precursor with high yield. The NiCo–NH3 complex precursor was converted to well-defined NiCo2O4 nanooctahedrons, where the calcination temperature and time were explored in detail. It revealed that DES could participate in the conversion process to control the morphology of calcination product. The resultant NiCo2O4 nanooctahedrons demonstrated excellent electroactivity and remarkable durability for oxygen evolution reaction (OER). The present strategy not only offers an efficient OER electrocatalyst but also enriches the approaches of DESs in designing advanced nanocatalysts.

     

  • loading
  • [1]
    A. Fotouhi, D.J. Auger, K. Propp, S. Longo, M. Wild, Renew. Sustain. Energy Rev. 56 (2016) 1008–1021.
    [2]
    T. Wu, M. Jing, L. Yang, G. Zou, H. Hou, Y. Zhang, Y. Zhang, X. Cao, X. Ji, Adv. Energy Mater. 9 (2019) 1803478.
    [3]
    A. Manthiram, Y. Fu, Y.S. Su, Acc. Chem. Res. 46 (2013) 1125–1134.
    [4]
    T. Ould Ely, D. Kamzabek, D. Chakraborty, M.F. Doherty, ACS Appl. Energy Mater. 1 (2018) 1783–1814.
    [5]
    Y. Wang, X. Huang, S. Zhang, Y. Hou, Small Methods 2 (2018) 1700345.
    [6]
    X. Gu, L. Hencz, S. Zhang, Batteries 2 (2016) 33.
    [7]
    A. Manthiram, Y. Fu, S.H. Chung, C. Zu, Y.S. Su, Chem. Rev. 114 (2014) 11751–11787.
    [8]
    B. Liu, R. Fang, D. Xie, W. Zhang, H. Huang, Y. Xia, X. Wang, X. Xia, J. Tu, Energy Environ. Mater. 1 (2018) 196–208.
    [9]
    L.F. Nazar, M. Cuisinier, Q. Pang, MRS Bull. 39 (2014) 436–442.
    [10]
    R. Cao, W. Xu, D. Lv, J. Xiao, J.G. Zhang, Adv. Energy Mater. 5 (2015) 1402273.
    [11]
    J. Zhang, H. Huang, J. Bae, S.H. Chung, W. Zhang, A. Manthiram, G. Yu, Small Methods 2 (2018) 1700279.
    [12]
    J. Liu, M. Wang, N. Xu, T. Qian, C. Yan, Energy Storage Mater. 15 (2018) 53–64.
    [13]
    J.Q. Huang, Q. Zhang, F. Wei, Energy Storage Mater. 1 (2015) 127–145.
    [14]
    D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 12 (2017) 194.
    [15]
    J. Scheers, S. Fantini, P. Johansson, J. Power Sources 255 (2014) 204–218.
    [16]
    R. Fang, H. Xu, B. Xu, X. Li, Y. Li, J.B. Goodenough, Adv. Funct. Mater. 31 (2020) 2001812.
    [17]
    L. Xu, J. Li, W. Deng, H. Shuai, S. Li, Z. Xu, J. Li, H. Hou, H. Peng, G. Zou, X. Ji, Adv. Energy Mater. 30 (2020) 2000648.
    [18]
    T. Cleaver, P. Kovacik, M. Marinescu, T. Zhang, G. Offer, J. Electrochem. Soc. 165 (2018) A6029–A6033.
    [19]
    H. Chen, M. Ling, L. Hencz, H.Y. Ling, G. Li, Z. Lin, G. Liu, S. Zhang, Chem. Rev. 118 (2018) 8936–8982.
    [20]
    L. Hencz, H. Chen, H.Y. Ling, Y. Wang, C. Lai, H. Zhao, S. Zhang, Nano-Micro Lett. 11 (2019) 17.
    [21]
    J. Zhu, P. Zhu, C. Yan, X. Dong, X. Zhang, Prog. Polym. Sci. 90 (2018) 118–163.
    [22]
    J. Liu, Q. Zhang, Y.K. Sun, J. Power Sources 396 (2018) 19–32.
    [23]
    Q. Guo, Z. Zheng, Adv. Funct. Mater. 30 (2020) 1907931.
    [24]
    Q. Qi, X. Lv, W. Lv, Q.-H. Yang, J. Energy Chem. 39 (2019) 88–100.
    [25]
    H. Yuan, J.Q. Huang, H.J. Peng, M.M. Titirici, R. Xiang, R. Chen, Q. Liu, Q. Zhang, Adv. Energy Mater. 8 (2018) 1802107.
    [26]
    Y. Yanagisawa, Y. Nan, K. Okuro, T. Aida, Science 359 (2018) 72–76.
    [27]
    S. Chen, H.Y. Ling, H. Chen, S. Zhang, A. Du, C. Yan, J. Power Sources 450 (2020) 227671.
    [28]
    G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169–11186.
    [29]
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865–3868.
    [30]
    G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758–1775.
    [31]
    T.Z. Hou, W.T. Xu, X. Chen, H.J. Peng, J.Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 56 (2017) 8178–8182.
    [32]
    M.J. Lacey, F. Jeschull, K. Edström, D. Brandell, Chem. Commun. 49 (2013) 8531–8533.
    [33]
    S.E. Cheon, J.H. Cho, K.S. Ko, C.W. Kwon, D.R. Chang, H.T. Kim, S.W. Kim, J. Electrochem. Soc. 149 (2002) A1437–A1441.
    [34]
    P. Ji, B. Shang, Q. Peng, X. Hu, J. Wei, J. Power Sources 400 (2018) 572–579.
    [35]
    H. Yi, T. Lan, Y. Yang, Z. Lei, H. Zeng, T. Tang, C. Wang, Y. Deng, J. Mater. Chem. A 6 (2018) 18660–18668.
    [36]
    C.N.R. Rao, R. Venkataraghavan, Spectrochim. Acta A Mol. Spectrosc. 45 (1989) 299–305.
    [37]
    G. Li, C. Wang, W. Cai, Z. Lin, Z. Li, S. Zhang, NPG Asia Mater. 8 (2016) e317.
    [38]
    R. Custelcean, Chem. Commun. 3 (2008) 295–307.
    [39]
    M. Yoshio, R.J. Brodd, A. Kozawa, Lithium-Ion Batteries, first ed., Springer, New York, 2009.
    [40]
    P. Louette, F. Bodino, J.-J. Pireaux, Surf. Sci. Spectra 12 (2005) 59–63.
    [41]
    D.J. Martin, K. Qiu, S.A. Shevlin, A.D. Handoko, X. Chen, Z. Guo, J. Tang, Angew. Chem. Int. Ed. 53 (2014) 9240–9245.
    [42]
    X. Gu, H. Li, H. Wen, Y. Zhou, H. Kang, H. Liao, M. Gao, Y. Wang, L. Deng, X. Yi, X. Liu, J. Mater. Sci. 55 (2020) 1136–1147.
    [43]
    X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L.F. Nazar, Nat. Commun. 6 (2015) 5682.
    [44]
    R. Walton, Coord. Chem. Rev. 31 (1980) 183–220.
    [45]
    J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of XRay Photoelectron Spectroscopy, Perkin-Elmer Corporation, Minnesota, 1995.
    [46]
    Z.W. Seh, Q. Zhang, W. Li, G. Zheng, H. Yao, Y. Cui, Chem. Sci. 4 (2013) 3673–3677.
    [47]
    K. Sun, H. Liu, H. Gan, J. Electrochem. Energy Conver. Storage 13 (2016) 21002.
    [48]
    H.J. Peng, J.Q. Huang, X.B. Cheng, Q. Zhang, Adv. Energy Mater. 7 (2017) 1770141.
    [49]
    Z. Deng, Z. Zhang, Y. Lai, J. Liu, J. Li, Y. Liu, J. Electrochem. Soc. 160 (2013) A553–A558.
    [50]
    S.S. Zhang, K. Xu, T.R. Jow, Electrochim. Acta 51 (2006) 1636–1640.
    [51]
    Y. Wang, D. Adekoya, J. Sun, T. Tang, H. Qiu, L. Xu, S. Zhang, Y. Hou, Adv. Funct. Mater. 29 (2019) 1807485.
    [52]
    B. Li, C. Han, Y.-B. He, C. Yang, H. Du, Q.-H. Yang, F. Kang, Energy Environ. Sci. 5 (2012) 9595–9602.
    [53]
    N. Takami, A. Satoh, M. Hara, T. Ohsaki, J. Electrochem. Soc. 142 (1995) 371–379.
    [54]
    H.M. Kim, J.-Y. Hwang, D. Aurbach, Y.K. Sun, J. Phys. Chem. Lett. 8 (2017) 5331–5337.
    [55]
    G. Xu, Q.-B. Yan, A. Kushima, X. Zhang, J. Pan, J. Li, Nano Energy 31 (2017) 568–574.
    [56]
    W. Chen, T. Lei, T. Qian, W. Lv, W. He, C. Wu, X. Liu, J. Liu, B. Chen, C. Yan, Adv. Energy Mater. 8 (2018) 1702889.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (256) PDF downloads(31) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return