Volume 7 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Jae-Gyoung Seong, Tae Hoon Ko, Danyun Lei, Woong-Ki Choi, Yun-Su Kuk, Min-Kang Seo, Byoung-Suhk Kim. Engineered NiCo-LDH nanosheets- and ZnFe2O4 nanocubes-decorated carbon nanofiber bonded mats for high-rate asymmetric supercapacitors. Green Energy&Environment, 2022, 7(6): 1228-1240. doi: 10.1016/j.gee.2021.01.015
Citation: Jae-Gyoung Seong, Tae Hoon Ko, Danyun Lei, Woong-Ki Choi, Yun-Su Kuk, Min-Kang Seo, Byoung-Suhk Kim. Engineered NiCo-LDH nanosheets- and ZnFe2O4 nanocubes-decorated carbon nanofiber bonded mats for high-rate asymmetric supercapacitors. Green Energy&Environment, 2022, 7(6): 1228-1240. doi: 10.1016/j.gee.2021.01.015

Engineered NiCo-LDH nanosheets- and ZnFe2O4 nanocubes-decorated carbon nanofiber bonded mats for high-rate asymmetric supercapacitors

doi: 10.1016/j.gee.2021.01.015
  • In this work, we have prepared the hierarchically nanostructured core–shell NiCo layered double hydroxide (NiCo-LDH) nanosheets- and ZnFe2O4 nanocubes-decorated polyacrylonitrile (PAN)/pitch-based carbon nanofibers (PPCNs) webs (NiCo-LDH@PPCNs as cathode and ZnFe2O4@PPCNs as anode materials) with the bonded network structure by a facile and scalable hydrothemal method. Herein, the low-cost pitch with lower softening point (∼90 °C) as co-precursor was utilized to produce the PAN/pitch-based carbon nanofibers (PPCNs) with enhanced electrical conductivity. The obtained PPCNs with pitch content of 30% (PP30CNs) electrode material delivered higher specific capacitance (∼67 F g-1) than that (∼48 F g-1) of the PAN-based carbon nanofibers (PCNs) at 1 A g-1, due to the increased electrical conductivity and lower interfacial charge transfer resistance (RCT) of ∼0.16 Ω. Further, the NiCo-LDH-decorated PP30CNs (NiCo-LDH@PP30CNs) as cathode material showed superior specific capacitance of 1162 F g-1 at 1.0 A g-1 and ultra-high retention rate of 91.56% at 10 A g-1. The ZnFe2O4@PP30CNs as anode material also showed higher specific capacitance of 282 F g-1 at 1 A g-1 and good rate capability with capacitance retention of 56.73% at 10 A g-1. The as-fabricated asymmetric NiCo-LDH@PP30CNs//ZnFe2O4@PP30CNs hybrid supercapacitor device delivered a specific capacitance of ∼98 F g-1 at 1 A g-1 and excellent capacitance retention of ∼88% after 5000 charge–discharge cycles.

     

  • loading
  • [1]
    G. Liu, B. Wang, L. Wang, W. Wei, Y. Quan, C. Wang, W. Zhu, H. Li, J. Xia, Green Energy Environ. 7 (2022) 423–431.
    [2]
    C.H. Chen, D. Wu, Z. Li, R. Zhang, C.G. Kuai, X.R. Zhao, C.K. Dong, S.Z. Qiao, H. Liu, X.W. Du, Adv. Energy Mater. 9 (2019) 1803913.
    [3]
    G. Liu, Y. Wu, R. Yao, F. Zhao, J. Li, Green Energy Environ. 6 (2021) 496–505.
    [4]
    D. Ouyang, J. Xiao, F. Ye, Z. Huang, H. Zhang, L. Zhu, J. Cheng, W.C.H. Choy, Adv. Energy Mater. 8 (2018) 1702722.
    [5]
    X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang, Z. Lin, Angew. Chem. Int. Ed. 55 (2016) 6290–6294.
    [6]
    L. Kumar, M. Chauhan, P.K. Boruah, M.R. Das, S.A. Hashmi, S. Deka, ACS Appl. Energy Mater. 3 (2020) 6793–6804.
    [7]
    J. Wang, T. Qiu, X. Chen, Y. Lu, W. Yang, J. Power Sources 268 (2014) 341–348.
    [8]
    S. Farhadi, J. Safabakhsh, J. Alloys Compd. 515 (2012) 180–185.
    [9]
    X. Ge, C.D. Gu, Y. Lu, X.L. Wang, J.P. Tu, J. Mater. Chem. A 1 (2013) 13454–13461.
    [10]
    Y. Li, B. Tan, Y. Wu, Chem. Mater. 20 (2008) 567–576.
    [11]
    Y. Chen, T.C. Mu, Green Energy Environ. 4 (2019) 95–115.
    [12]
    G.M. Thorat, H.S. Jadhav, A. Roy, W.J. Chung, J.G. Seo, ACS Sustain. Chem. Eng. 6 (2018) 16255–16266.
    [13]
    A.P. Abbott, G. Capper, D.L. Davies, K.J. McKenzie, S.U. Obi, J. Chem. Eng. Data 51 (2006) 1280–1282.
    [14]
    H.Y. Mou, J.F. Wang, D.K. Yu, D.L. Zhang, F. Lu, L. Chen, D.B. Wang, T.C. Mu, J. Mater. Chem. A 7 (2019) 13455–13459.
    [15]
    W.Y. Tang, K.H. Row, J. Clean. Prod. 268 (2020) 122306.
    [16]
    G.Z. Li, K.H. Row, J. Separ. Sci. 41 (2018) 3424–3431.
    [17]
    W.Y. Tang, G.Z. Li, B.Q. Chen, T. Zhu, K.H. Row, Separ. Sci. Technol. 52 (2017) 91–99.
    [18]
    R.H. Lee, K.H. Row, J. Ind. Eng. Chem. 39 (2016) 87–92.
    [19]
    L.L. Liu, W.Y. Tang, B.K. Tang, D.D. Han, K.H. Row, Tao Zhu, J. Separ. Sci. 40 (2017) 1887–1895.
    [20]
    X.H. Zhao, Z.M. Xue, W.J. Chen, Y.Q. Wang, T.C. Mu, ChemSusChem 13 (2020) 2038–2042.
    [21]
    H.Y. Mou, J.F. Wang, D.L. Zhang, D.K. Yu, W.J. Chen, D.B. Wang, T.C. Mu, J. Mater. Chem. A 7 (2019) 5719–5725.
    [22]
    C. Zhang, T. Chen, H. Zhang, Z. Li, J. Hao, Chem. Asian J. 14 (2019) 2995–3002.
    [23]
    S. Liu, C. Zhang, B. Zhang, Z. Li, J. Hao, ACS Sustain. Chem. Eng. 7 (2019) 8964–8971.
    [24]
    S. Liu, T. Chen, H. Ying, Z. Li, J. Hao, Adv. Sustainable Syst. 4 (2020) 2000038.
    [25]
    C. Zhang, B. Zhang, Z. Li, J. Hao, ACS Appl. Energy Mater. 2 (2019) 3343–3351.
    [26]
    J.M. Zhang, S.N. Sun, Y. Li, X.J. Zhang, P.Y. Zhang, Y.J. Fan, Int. J. Hydrogen Energy 42 (2017) 26744–26751.
    [27]
    A.P. Abbott, K. El Ttaib, G. Frisch, K.J. McKenzie, K.S. Ryder, Phys. Chem. Chem. Phys. 11 (2009) 4269–4277.
    [28]
    J. Niu, H. Liu, Y. Zhang, X. Wang, J. Han, Z. Yue, E. Duan, Chemosphere 259 (2020) 127427.
    [29]
    J. Hartley, C. Ip, G. Forrest, K. Singh, S.J. Gurman, K.S. Ryder, A.P. Abbott, G. Frisch, Inorg. Chem. 53 (2014) 6280–6288.
    [30]
    J.M. Terrasse, H. Pqulet, J.P. Mathieu, Spectrochim. Acta 20 (1964) 305–315.
    [31]
    K. Fominykh, J.M. Feckl, J. Sicklinger, M. Döblinger, S. Böcklein, J. Ziegler, L.M. Peter, J. Rathousky, E. Scheidt, T. Bein, D. FattakhovaRohlfing, Adv. Funct. Mater. 24 (2014) 3123–3129.
    [32]
    J. Li, Z. Xia, X. Zhou, Y.B. Qin, Y. Ma, Y. Qu, Nano Res 10 (2017) 814–825.
    [33]
    J. Jiang, C. Yan, X. Zhao, H. Luo, Z. Xue, T. Mu, Green Chem. 19 (2017) 3023–3031.
    [34]
    B. Cui, H. Lin, J. Li, X. Li, J. Yang, J. Tao, Adv. Funct. Mater. 18 (2008) 1440–1447.
    [35]
    O.S. Hammond, K.J. Edler, D.T. Bowron, L. Torrentemurciano, Nat. Commun. 8 (2017) 14150.
    [36]
    A.P. Abbott, R.C. Harris, K.S. Ryder, C. D'Agostino, L.F. Gladden, M.D. Mantle, Green Chem. 13 (2011) 82–90.
    [37]
    Z. Peng, D. Jia, A.M. Al-Enizi, A.A. Elzatahry, G. Zheng, Adv. Energy Mater. 5 (2015) 1402031.
    [38]
    C. Broicher, F. Zeng, J. Artz, H. Hartmann, A. Besmehn, S. Palkovits, R. Palkovits, ChemCatChem 11 (2019) 412–416.
    [39]
    L. Fang, Z. Jiang, H. Xu, L. Liu, Y. Guan, X. Gu, Y. Wang, J. Catal. 357 (2018) 238–246.
    [40]
    A.R. Jadhav, H.A. Bandal, A.A. Chaugule, H. Kim, Electrochim. Acta 240 (2017) 277–287.
    [41]
    Z. Zhang, X. Liang, J. Li, J. Qian, Y. Liu, S. Yang, Y. Wang, D. Gao, D. Xue, ACS Appl. Mater. Interfaces 12 (2020) 21661–21669.
    [42]
    S. Chen, S.Z. Qiao, ACS Nano 7 (2013) 10190–10196.
    [43]
    H. Wang, Y. Hsu, R. Chen, T. Chan, H.M. Chen, B. Liu, Adv. Energy Mater. 5 (2015) 1500091.
    [44]
    Z.L. Wang, J. Phys. Chem. B 104 (2000) 1153–1175.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (202) PDF downloads(18) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return