Volume 7 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Luke Hencz, Hao Chen, Zhenzhen Wu, Xingxing Gu, Meng Li, Yuhui Tian, Su Chen, Cheng Yan, Abdulaziz S.R. Bati, Joseph G. Shapter, Milton Kiefel, Dong-Sheng Li, Shanqing Zhang. Poly(thiourea triethylene glycol) as a multifunctional binder for enhanced performance in lithium-sulfur batteries. Green Energy&Environment, 2022, 7(6): 1206-1216. doi: 10.1016/j.gee.2021.01.014
Citation: Luke Hencz, Hao Chen, Zhenzhen Wu, Xingxing Gu, Meng Li, Yuhui Tian, Su Chen, Cheng Yan, Abdulaziz S.R. Bati, Joseph G. Shapter, Milton Kiefel, Dong-Sheng Li, Shanqing Zhang. Poly(thiourea triethylene glycol) as a multifunctional binder for enhanced performance in lithium-sulfur batteries. Green Energy&Environment, 2022, 7(6): 1206-1216. doi: 10.1016/j.gee.2021.01.014

Poly(thiourea triethylene glycol) as a multifunctional binder for enhanced performance in lithium-sulfur batteries

doi: 10.1016/j.gee.2021.01.014
  • A mechanically strong binder with polar functional groups could overcome the dilemma of the large volume change during charge/discharge processes and poor cyclability of lithium-sulfur batteries (LSBs). In this work, for the first time, we report the use of poly(thiourea triethylene glycol) (PTTG) as a multifunctional binder for sulfur cathodes to enhance the performance of LSBs. As expected, the PTTG binder facilitates the high performance and stability delivered by the Sulfur-PTTG cathode, including a higher reversible capacity of 825 mAh g-1 at 0.2 C after 80 cycles, a lower capacity fading (0.123% per cycle) over 350 cycles at 0.5 C, a higher areal capacity of 2.5 mAh cm-2 at 0.25 mA cm-2, and better rate capability of 587 mAh g-1 at 2 C. Such superior electrochemical performances could be attributed to PTTG's strong chemical adsorption towards polysulfides which may avoid the lithium polysulfide shuttle effect and excellent mechanical characteristics which prevents electrode collapse during cycling and allows the Sulfur-PTTG electrode to maintain robust electron and ion migration pathways for accelerated redox reaction kinetics.

     

  • • A multifunctional PTTG binder is used to fabricate lithium-sulfur batteries for the first time. • PTTG binder illustrates higher mechanical strength compared to the PVDF binder. • PTTG binder demonstrates an excellent ability to inhibit polysulfides from shuttling via strong chemical adsorption. • The Sulfur-PTTG electrode displays improved electron and ion transportation. • The Sulfur-PTTG cathode delivers improved electrochemical performance and outstanding stability.
  • loading
  • [1]
    Y. Fang, L. Xiao, Z. Chen, X. Ai, Y. Cao, H. Yang, Electrochem. Energy Rev. 1 (2018) 294–323.
    [2]
    T. Wang, D. Su, D. Shanmukaraj, T. Rojo, M. Armand, G. Wang, Electrochem. Energy Rev. 1 (2018) 200–237.
    [3]
    H. Kang, H. Liu, C. Li, L. Sun, C. Zhang, H. Gao, J. Yin, B. Yang, Y. You, K.-C. Jiang, H. Long, S. Xin, ACS Appl. Mater. Interfaces 10 (2018) 37023–37030.
    [4]
    S. Zhang, L. Qiu, Y. Zheng, Q. Shi, T. Zhou, V. Sencadas, Y. Xu, S. Zhang, L. Zhang, C. Zhang, C.-L. Zhang, S.-H. Yu, Z. Guo, Adv. Funct. Mater. 31 (2020) 2006425.
    [5]
    J. Liu, P. Kopold, C. Wu, P.A. van Aken, J. Maier, Y. Yu, Energy Environ. Sci. 8 (2015) 3531–3538.
    [6]
    L.B. Ran, I. Gentle, T.G. Lin, B. Luo, N. Mo, M. Rana, M. Li, L.Z. Wang, R. Knibbe, J. Power Sources 461 (2020) 228116.
    [7]
    Z. Liu, X. Wang, Z. Wu, S. Yang, S. Yang, S. Chen, X. Wu, X. Chang, P. Yang, J. Zheng, X. Li, Nano Res 13 (2020) 3157–3164.
    [8]
    Z. Li, J. Ding, D. Mitlin, Acc. Chem. Res. 48 (2015) 1657–1665.
    [9]
    H. Usui, Y. Domi, R. Yamagami, H. Sakaguchi, Green Energy Environ. 4 (2019) 121–126.
    [10]
    W. Wang, J. Zhang, D.Y.W. Yu, Q. Li, J. Power Sources 364 (2017) 420–425.
    [11]
    J. Zhang, W. Wang, B. Li, Chem. Eng. J. 392 (2020) 123810.
    [12]
    R. Xu, G. Wang, T. Zhou, Q. Zhang, H.-P. Cong, X. Sen, J. Rao, C. Zhang, Y. Liu, Z. Guo, S.-H. Yu, Nanomater. Energy 39 (2017) 253–261.
    [13]
    J. Zhang, C. Zhang, W. Li, Q. Guo, H. Gao, Y. You, Y. Li, Z. Cui, K.- C. Jiang, H. Long, D. Zhang, S. Xin, ACS Appl. Mater. Interfaces 10 (2018) 5543–5550.
    [14]
    Y. Zhao, T. Liu, Q. Shi, Q. Yang, C. Li, D. Zhang, C. Zhang, Green Energy Environ. 3 (2018) 78–85.
    [15]
    W. Zhang, Q. Zhang, Q. Shi, S. Xin, J. Wu, C.-L. Zhang, L. Qiu, C. Zhang, ACS Appl. Mater. Interfaces 11 (2019) 29934–29940.
    [16]
    L. Yan, J. Shu, C. Li, X. Cheng, H. Zhu, H. Yu, C. Zhang, Y. Zheng, Y. Xie, Z. Guo, Energy Storage Mater. 16 (2019) 535–544.
    [17]
    C. Zhang, X. Peng, Z. Guo, C. Cai, Z. Chen, D. Wexler, S. Li, H. Liu, Carbon 50 (2012) 1897–1903.
    [18]
    W.X. Zhao, X.Q. Ma, L.X. Gao, Y.D. Li, G.Z. Wang, Q. Sun, Carbon 167 (2020) 736–745.
    [19]
    L.B. Ran, B. Luo, I.R. Gentle, T.G. Lin, Q. Sun, M. Li, M.M. Rana, L.Z. Wang, R. Knibbe, ACS Nano 14 (2020) 8826–8837.
    [20]
    A.L.M. Reddy, M.M. Shaijumon, S.R. Gowda, P.M. Ajayan, Nano Lett. 9 (2009) 1002–1006.
    [21]
    X. Xu, H. Tan, K. Xi, S. Ding, D. Yu, S. Cheng, G. Yang, X. Peng, A. Fakeeh, R.V. Kumar, Carbon 84 (2015) 491–499.
    [22]
    X.L. Fan, T. Gao, C. Luo, F. Wang, J.K. Hu, C.S. Wang, Nanomater. Energy 38 (2017) 350–357.
    [23]
    H. Liu, M. Jia, Q. Zhu, B. Cao, R. Chen, Y. Wang, F. Wu, B. Xu, ACS Appl. Mater. Interfaces 8 (2016) 26878–26885.
    [24]
    Q. Guo, Y. Ma, T. Chen, Q. Xia, M. Yang, H. Xia, Y. Yu, ACS Nano 11 (2017) 12658–12667.
    [25]
    C. Feng, M. Dan, C. Zhang, Z. Guo, S. Wang, R. Zeng, J. Nanosci. Nanotechnol. 12 (2012) 7747–7751.
    [26]
    Y. Xu, B. Peng, F.M. Mulder, Adv. Energy Mater. 8 (2018) 1701847.
    [27]
    Q.Y. Zhang, C.F. Zhang, W.W. Luo, L.F. Cui, Y.J. Wang, T.Y. Jian, X.L. Li, Q.Z. Yan, H.D. Liu, C.Y. Ouyang, Y.L. Chen, C.L. Chen, J.J. Zhang, Adv. Sci. 7 (2020) 2000749.
    [28]
    Y. Jiang, Z.X. Wang, C.X. Xu, W.X. Li, Y. Li, S.S. Huang, Z.W. Chen, B. Zhao, X.L. Sun, D.P. Wilkinson, J.J. Zhang, Energy Storage Mater. 28 (2020) 17–26.
    [29]
    Z.J. Wang, Y.Y. Wang, Z.H. Zhang, X.W. Chen, W. Lie, Y.B. He, Z. Zhou, G.L. Xia, Z.P. Guo, Adv. Funct. Mater. 30 (2020) 2002414.
    [30]
    J.N. Hao, X.L. Li, S.L. Zhang, F.H. Yang, X.H. Zeng, S. Zhang, G.Y. Bo, C.S. Wang, Z.P. Guo, Adv. Funct. Mater. 30 (2020) 2001263.
    [31]
    E. Pan, Y. Jin, C. Zhao, M. Jia, Q. Chang, M. Jia, J. Alloys Compd. 769 (2018) 45–52.
    [32]
    W. Zhao, X. Ma, L. Gao, Y. Li, G. Wang, Q. Sun, Carbon 167 (2020) 736–745.
    [33]
    E. Pan, Y. Jin, C. Zhao, M. Jia, Q. Chang, M. Jia, L. Wang, X. He, ACS Appl. Energy Mater. 2 (2019) 1756–1764.
    [34]
    J. Luis Gomez-Camer, B. Acebedo, N. Ortiz-Vitoriano, I. Monterrubio, M. Galceran, T. Rojo, J. Mater Chem. A 7 (2019) 18434–18441.
    [35]
    T. Palaniselvam, C. Mukundan, I. Hasa, A.L. Santhosha, M. Goktas, H. Moon, M. Ruttert, R. Schmuch, K. Pollok, F. Langenhorst, M. Winter, S. Passerini, P. Adelhelm, Adv. Funct. Mater. 30 (2020) 202004798.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (182) PDF downloads(23) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return