Volume 7 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
Wenqing Yao, Xian Jiang, Yulian Li, Cuiting Zhao, Linfei Ding, Dongmei Sun, Yawen Tang. N-doped graphene anchored ultrasmall Ir nanoparticles as bifunctional electrocatalyst for overall water splitting. Green Energy&Environment, 2022, 7(5): 1111-1118. doi: 10.1016/j.gee.2021.01.011
Citation: Wenqing Yao, Xian Jiang, Yulian Li, Cuiting Zhao, Linfei Ding, Dongmei Sun, Yawen Tang. N-doped graphene anchored ultrasmall Ir nanoparticles as bifunctional electrocatalyst for overall water splitting. Green Energy&Environment, 2022, 7(5): 1111-1118. doi: 10.1016/j.gee.2021.01.011

N-doped graphene anchored ultrasmall Ir nanoparticles as bifunctional electrocatalyst for overall water splitting

doi: 10.1016/j.gee.2021.01.011
  • Seeking for extremely active and durable bifunctional electrocatalysts towards the overall water splitting possesses a strategic significance on the development of sustainable and clean energy for the replacement of fossil fuels. Ir-based nanomaterials are deemed as one of the most high-efficiency oxygen evolution reaction electrocatalysts while the hydrogen evolution reaction performance is unfavorable. In this work, we report a one-pot hydrothermal synthesis of N-doped graphene anchored Ir nanoparticles (Ir/N-rGO) with ultrasmall particle size (~2.0 nm). Apart from the predictably superior OER performance, the resultant Ir/N-rGO also displays excellent hydrogen evolution reaction (HER) performance, requiring merely 76 and 260 mV overpotentials to achieve the current density of 10 mA cm-2 towards HER and OER, respectively. When applied as the bifunctional electrodes for overall water splitting, Ir/N-rGO needs a lower overpotential (1.74 V) to achieve a current density of 50 mA cm-2 in alkaline solution, exceeding that of Pt/C and RuO2 couple (1.85 V). Thus, the as-fabricated Ir/N-rGO has a commendable prospect in the practical application of alkaline water electrocatalysis.

     

  • These authors contribute equally to this work.
  • loading
  • [1]
    J. Cao, K. Wang, J. Chen, C. Lei, B. Yang, Z. Li, L. Lei, Y. Hou, K. Ostrikov, Nano-Micro Lett. 11(2019) 67.
    [2]
    S. Geng, W. Yang, Y. Yu, Chem. Asian J. 14(2019) 1013-1020.
    [3]
    T. Reier, Z. Pawolek, S. Cherevko, M. Bruns, T. Jones, D. Teschner, S. Selve, A. Bergmann, H.N. Nong, R. Schlogl, K.J. Mayrhofer, P. Strasser, J. Am. Chem. Soc. 137(2015) 13031-13040.
    [4]
    Y.C. Pi, J. Guo, Q. Shao, X.Q. Huang, Chem. Mater. 30(2018) 8571-8578.
    [5]
    K. Qu, Y. Zheng, S. Dai, S.Z. Qiao, Nanomater. Energy 19(2016) 373-381.
    [6]
    Q. Shi, C. Zhu, H. Zhong, D. Su, N. Li, M.H. Engelhard, H. Xia, Q. Zhang, S. Feng, S.P. Beckman, D. Du, Y. Lin, ACS Energy Lett. 3(2018) 2038-2044.
    [7]
    G. Fu, Y. Liu, Z. Wu, J.-M. Lee, ACS Appl. Nano Mater. 1(2018) 1904-1911.
    [8]
    J. Bao, W. Liu, J. Xie, L. Xu, M. Guan, F. Lei, Y. Zhao, Y. Huang, J. Xia, H. Li, Chem. Asian J. 14(2019) 480-485.
    [9]
    J. Ma, Y. Wang, W. Pan, J. Zhang, Chem. Asian J. 15(2020) 1500-1504.
    [10]
    Y. Gu, S. Chen, J. Ren, Y.A. Jia, C. Chen, S. Komarneni, D. Yang, X. Yao, ACS Nano 12(2018) 245-253.
    [11]
    Q. Yuan, Y. Yu, P.C. Sherrell, J. Chen, X. Bi, Chem. Asian J. 15(2020) 1728-1735.
    [12]
    J. Zhu, Z. Lyu, Z. Chen, M. Xie, M. Chi, W. Jin, Y. Xia, Chem. Mater. 31(2019) 5867-5875.
    [13]
    Z. Liu, J. Li, J. Zhang, M. Qin, G. Yang, Y. Tang, ChemCatChem 12(2020) 3060-3067.
    [14]
    Y. Pi, N. Zhang, S. Guo, J. Guo, X. Huang, Nano Lett. 16(2016) 4424-4430.
    [15]
    F.-D. Kong, S. Zhang, G.-P. Yin, J. Liu, Z.-Q. Xu, Int. J. Hydrogen Energy 38(2013) 9217-9222.
    [16]
    Z. Shi, X. Wang, J. Ge, C. Liu, W. Xing, Nanoscale 12(2020) 13249-13275.
    [17]
    W.Q. Zaman, W. Sun, Z.-h. Zhou, Y. Wu, L. Cao, J. Yang, ACS Appl. Energy Mater. 1(2018) 6374-6380.
    [18]
    H.S. Oh, H.N. Nong, T. Reier, M. Gliech, P. Strasser, Chem. Sci. 6(2015) 3321-3328.
    [19]
    Y.-J. Tang, Y. Wang, X.-L. Wang, S.-L. Li, W. Huang, L.-Z. Dong, C.-H. Liu, Y.-F. Li, Y.-Q. Lan, Adv. Energy Mater. 6(2016) 1600116.
    [20]
    D. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun, S. Ye, S. Knights, Energy Environ. Sci. 4(2011) 760-764.
    [21]
    C.-B. Ma, X. Qi, B. Chen, S. Bao, Z. Yin, X.-J. Wu, Z. Luo, J. Wei, H.-L. Zhang, H. Zhang, Nanoscale 6(2014) 5624-5629.
    [22]
    H. Fei, J. Dong, M.J. Arellano-Jiménez, G. Ye, N. Dong Kim, E.L.G. Samuel, Z. Peng, Z. Zhu, F. Qin, J. Bao, M.J. Yacaman, P.M. Ajayan, D. Chen, J.M. Tour, Nat. Commun. 6(2015) 8668.
    [23]
    S.-H. Cho, K.R. Yoon, K. Shin, J.-W. Jung, C. Kim, J.Y. Cheong, D.-Y. Youn, S.W. Song, G. Henkelman, I.-D. Kim, Chem. Mater. 30(2018) 5941-5950.
    [24]
    Y. Yan, B. Xia, X. Qi, H. Wang, R. Xu, J.-Y. Wang, H. Zhang, X. Wang, Chem. Commun. 49(2013) 4884-4886.
    [25]
    Y.H. Li, H.J. Yu, Z.Q. Wang, S.L. Liu, Y. Xu, X.N. Li, L. Wang, H.J. Wang, Chem. Commun. 55(2019) 14745-14748.
    [26]
    Y. Zheng, Y. Jiao, L.H. Li, T. Xing, Y. Chen, M. Jaroniec, S.Z. Qiao, ACS Nano 8(2014) 5290-5296.
    [27]
    S.S. Shinde, A. Sami, D.-H. Kim, J.-H. Lee, Chem. Commun. 51(2015) 15716-15719.
    [28]
    S. Chen, J. Duan, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Ed. 52(2013) 13567-13570.
    [29]
    G.Y. Zhou, Y. Chen, H. Dong, L. Xu, X. Liu, C.W. Ge, D.M. Sun, Y.W. Tang, Int. J. Hydrogen Energy 44(2019) 26338-26346.
    [30]
    G. Fu, K. Wu, X. Jiang, L. Tao, Y. Chen, J. Lin, Y. Zhou, S. Wei, Y. Tang, T. Lu, X. Xia, Phys. Chem. Chem. Phys. 15(2013) 3793-3802.
    [31]
    G. Fu, X. Jiang, L. Tao, Y. Chen, J. Lin, Y. Zhou, Y. Tang, T. Lu, Langmuir 29(2013) 4413-4420.
    [32]
    G. Fu, L. Tao, M. Zhang, Y. Chen, Y. Tang, J. Lin, T. Lu, Nanoscale 5(2013) 8007-8014.
    [33]
    Z. Tang, Y. Zhao, Q. Lai, J. Zhong, Y. Liang, Nano-Micro Lett. 11(2019) 33-39.
    [34]
    R. Zhao, J. Chen, Z. Chen, X. Jiang, G. Fu, Y. Tang, W. Jin, J.-M. Lee, S. Huang, ACS Appl. Energy Mater. 3(2020) 4539-4548.
    [35]
    R. Zhao, Q. Li, Z. Chen, V. Jose, X. Jiang, G. Fu, J.-M. Lee, S. Huang, Carbon 164(2020) 398-406.
    [36]
    G. Fu, Y. Liu, Y. Chen, Y. Tang, J.B. Goodenough, J.M. Lee, Nanoscale 10(2018) 19937-19944.
    [37]
    Z. Xu, Y. Du, D. Liu, Y. Wang, W. Ma, Y. Wang, P. Xu, X. Han, ACS Appl. Mater. Interfaces 11(2019) 4268-4277.
    [38]
    S. Dou, A. Shen, L. Tao, S. Wang, Chem. Commun. 50(2014) 10672-10675.
    [39]
    S. Dou, L. Tao, J. Huo, S. Wang, L. Dai, Energy Environ. Sci. 9(2016) 1320-1326.
    [40]
    G. Zhou, M. Li, Y. Li, H. Dong, D. Sun, X. Liu, L. Xu, Z. Tian, Y. Tang, Adv. Funct. Mater. 30(2019) 1905252.
    [41]
    X. Huang, X. Xu, C. Li, D. Wu, D. Cheng, D. Cao, Adv. Energy Mater. 9(2019) 1803970.
    [42]
    W. Cui, N. Cheng, Q. Liu, C. Ge, A.M. Asiri, X. Sun, ACS Catal. 4(2014) 2658-2661.
    [43]
    M. Li, X. Pan, M. Jiang, Y. Zhang, Y. Tang, G. Fu, Chem. Eng. J. 395(2020) 125160.
    [44]
    X. Hu, T. Li, Y. Tang, Y. Wang, A. Wang, G. Fu, X. Li, Y. Tang, Chem. Eur. J. 25(2019) 7561-7568.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (184) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return