Volume 7 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
Chang-Mok Oh, Soyeong Jang, Jihoon Lee, Sung Heum Park, In-Wook Hwang. Versatile control of concentration gradients in non-fullerene acceptor-based bulk heterojunction films using solvent rinse treatments. Green Energy&Environment, 2022, 7(5): 1102-1110. doi: 10.1016/j.gee.2021.01.009
Citation: Chang-Mok Oh, Soyeong Jang, Jihoon Lee, Sung Heum Park, In-Wook Hwang. Versatile control of concentration gradients in non-fullerene acceptor-based bulk heterojunction films using solvent rinse treatments. Green Energy&Environment, 2022, 7(5): 1102-1110. doi: 10.1016/j.gee.2021.01.009

Versatile control of concentration gradients in non-fullerene acceptor-based bulk heterojunction films using solvent rinse treatments

doi: 10.1016/j.gee.2021.01.009
  • Solvent rinse treatments using polar methanol (MeOH) and nonpolar n-hexane have been developed for controlling material concentration gradients along the longitudinal direction of non-fullerene acceptor-based bulk heterojunction (BHJ) films comprised of electron donor polymer, PBDB-T and acceptor, ITIC-m. Before the used solvents (chlorobenzene with 1 vol% DIO) were completely evaporated, ITIC-m rich domains were formed at the top surface of the BHJ films after they were rinsed with MeOH, as evidenced by water contact angle, atomic force microscopy, time-of-flight secondary ion mass spectroscopy, which led to enhanced electron transport in the conventional structure of organic solar cells (OSCs). In contrast, after rinsing with n-hexane, ITIC-m rich domains were formed at the bottom surface of the films, which improved electron transport in the inverted structure OSCs. The enhanced carrier transports increased the PCEs (11.80% and 11.15%) in both conventional and inverted OSCs by 10.29% and 10.35% compared with control devices. The versatile control of material concentration gradients is determined to be feasible owing to the chemical interaction of the used substrates (glass, PEDOT:PSS, and ZnO) and rinsing solvents.

     

  • These authors contributed equally to this work.
  • loading
  • [1]
    G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270 (1995) 1789-1791
    [2]
    Y. Cheng, S. Yang, C. Hsu, Chem. Rev. 109 (2009) 5868-5923
    [3]
    G. Li, R. Zhu, Y. Yang, Nat. Photonics 6 (2012) 153-161
    [4]
    I.-W. Hwang, D. Moses, A.J. Heeger, J. Phys. Chem. C 112 (2008) 4350-4354
    [5]
    A. Tang, W. Song, B. Xiao, J. Guo, J. Min, Z. Ge, J. Zhang, Z. Wei, E. Zhou, Chem. Mater. 31 (2019) 3941-3947
    [6]
    N. An, Y. Cai, H. Wu, A. Tang, K. Zhang, X. Hao, Z. Ma, Q. Guo, H. S. Ryu, H. Y. Woo, Y. Sun, E. Zhou, Adv. Mater. 32 (2020) 2002122
    [7]
    S. Li, L. Ye, W. Zhao, H. Yan, B. Yang, D. Liu, W. Li, H. Ade, J. Hou, J. Am. Chem. Soc. 140 (2018) 7159-7167
    [8]
    L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.L. Yip, Y. Cao, Y. Chen, Science 361 (2018) 1094-1098
    [9]
    Z. Zheng, Q. Hu, S.Q. Zhang, D.Y. Zhang, J.Q. Wang, S.K. Xie, R. Wang, Y.P. Qin, W.N. Li, L. Hong, N.N. Liang, F. Liu, Y. Zhang, Z.X. Wei, Z.Y. Tang, T.P. Russell, J.H. Hou, H.Q. Zhou, Adv. Mater. 30 (2018) 1-9
    [10]
    Y. Zhang, B. Kan, Y. Sun, Y. Wang, R. Xia, X. Ke, Y.Q.Q. Yi, C. Li, H. L. Yip, X. Wan, Y. Cao, Y. Chen, Adv. Mater. 30 (2018) 1-7
    [11]
    S. Li, W. Liu, C. Z. Li, M. Shi, H. Chen, Small 13 (2017) 1-15
    [12]
    J. Hou, O. Inganäs, R. H. Friend, F. Gao, Nat. Mater. 17 (2018) 119-128
    [13]
    C. Yan, S. Barlow, Z. Wang, H. Yan, A. K. Y. Jen, S.R. Marder, X. Zhan, Nat. Rev. Mater. 3 (2018) 1-19
    [14]
    G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, H. Yan, Chem. Rev. 118 (2018) 3447-3507
    [15]
    J. Zhang, H. S. Tan, X. Guo, A. Facchetti, H. Yan, Nat. Energy 3 (2018) 720-731
    [16]
    P. Cheng, G. Li, X. Zhan, Y. Yang, Nat. Photonics 12 (2018) 131-142
    [17]
    F. Zhao, C. Wang, X. Zhan, Adv. Energy Mater. 8 (2018) 1-34
    [18]
    D. Deng, Y. Zhang, J. Zhang, Z. Wang, L. Zhu, J. Fang, B. Xia, Z. Wang, K. Lu, W. Ma, Z. Wei, Nat. Commun. 7 (2016) 1-9
    [19]
    J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma, H. Yan, Nat. Energy 1 (2016) 1-7
    [20]
    P. E. Shaw, A. Ruseckas, I. D. W. Samuel, Adv. Mater. 20 (2008) 3516-3520
    [21]
    H. Wang, H. Y. Wang, B. R. Gao, L. Wang, Z. Y. Yang, X. B. Du, Q. D. Chen, J. F. Song, H. B. Sun, Nanoscale 3 (2011) 2280-2285
    [22]
    S. Holliday, R. S. Ashraf, A. Wadsworth, D. Baran, S. A. Yousaf, C. B. Nielsen, C.-H. Tan, S. D. Dimitrov, Z. Shang, N. Gasparini, M. Alamoudi, F. Laquai, C. J. Brabec, A. Salleo, J. R. Durrant, I. McCulloch, Nat. Commun. 7 (2016) 1-11
    [23]
    N. Gasparini, A. Wadsworth, M. Moser, D. Baran, I. McCulloch, C. J. Brabec, Adv. Energy Mater. 8 (2018) 1-15
    [24]
    Z. Du, W. chen, Y. Chen, S. Qiao, X. Bao, S. Wen, M. Sun, L. Han R. Yang, J. Mater. Chem. A 2 (2014) 15904-15911
    [25]
    W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. 15 (2005) 1617-1622
    [26]
    Z. Yi, W. Ni, Q. Zhang, M. Li, B. Kan, X. Wan, Y. Chen, J. Mater. Chem. C 2 (2014) 7247-7255
    [27]
    G. De Luca, E. Treossi, A. Liscio, J. M. Mativetsky, L. M. Scolaro, V. Palermo, P. Samori, J. Mater. Chem. 20 (2010) 2493-2498
    [28]
    Y. Huang, X. Guo, F. Liu, L. Huo, Y. Chen, T.P. Russell, C.C. Han, Y. Li, J. Hou, Adv. Mater. 24 (2012) 3383-3389
    [29]
    L. Ye, S. Zhang, W. Ma, B. Fan, X. Guo, Y. Huang, H. Ade, J. Hou, Adv. Mater. 24 (2012) 6335-6341
    [30]
    L. Ye, Y. Jing, X. Guo, H. Sun, S. Zhang, M. Zhang, L. Huo, J. Hou, J. Phys. Chem. C 117 (2013) 14920-14928
    [31]
    B. J. Tremolet de Villers, K. A. O'Hara, D. P. Ostrowski, P. H. Biddle, S. E. Shaheen, M.L. Chabinyc, D. C. Olson, N. Kopidakis, Chem. Mater. 28 (2016) 876-884
    [32]
    T. Kong, H. Wang, W. Zhang, P. Fan, J. Yu, J. Phys. D:Appl. Phys. 52 (2019) 1-8
    [33]
    I.W. Hwang, J. Kong, H. K. Yoo, K. Lee, J. Phys. Chem. C 119 (2015) 12896-12903
    [34]
    J. Kong, I.W. Hwang, K. Lee, Adv. Mater. 26 (2014) 6275-6283
    [35]
    S. Lu, K. Liu, D. Chi, S. Yue, Y. Li, Y. Kou, X. Lin, Z. Wang, S. Qu, Z. Wang, Journal of Power Sources 300 (2015) 238-244
    [36]
    L. Chen, Z. Hong, G. Li, Y. Yang, Adv. Mater. 21 (2009) 1434-1449
    [37]
    K. Wang, C. Liu, T. Meng, C. Yi, X. Gong, Chem. Soc. Rev. 45 (2016) 2937-2975
    [38]
    S. Zhang, Y. Qin, J. Zhu, J. Hou, Adv. Mater. 30 (2018)
    [39]
    H. Choi, J. Lee, C.M. Oh, S. Jang, H. Kim, M. S. Jeong, S. H. Park, I.W. Hwang, J. Mater. Chem. A 7 (2019) 8805-8810
    [40]
    D.M. Huang, S.A. Mauger, S. Friedrich, S.J. George, D. Dumitriu-LaGrange, S. Yoon, A.J. Moulé, Adv. Funct. Mater. 21 (2011) 1657-1665
    [41]
    O.M. Awartani, B. Gautam, W. Zhao, R. Younts, J. Hou, K. Gundogdu, H. Ade, J. Mater. Chem. A 6 (2018) 12484-12492
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (139) PDF downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return