Volume 7 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
Rabia Khatoon, Sanam Attique, Rumin Liu, Sajid Rauf, Nasir Ali, Luhong Zhang, Yu-Jia Zeng, Yichuan Guo, Yusuf Valentino Kaneti, Jongbeom Na, Haichao Tang, Hongwen Chen, Yang Tian, Jianguo Lu. Carbonized waste milk powders as cathodes for stable lithium–sulfur batteries with ultra-large capacity and high initial coulombic efficiency. Green Energy&Environment, 2022, 7(5): 1071-1083. doi: 10.1016/j.gee.2021.01.007
Citation: Rabia Khatoon, Sanam Attique, Rumin Liu, Sajid Rauf, Nasir Ali, Luhong Zhang, Yu-Jia Zeng, Yichuan Guo, Yusuf Valentino Kaneti, Jongbeom Na, Haichao Tang, Hongwen Chen, Yang Tian, Jianguo Lu. Carbonized waste milk powders as cathodes for stable lithium–sulfur batteries with ultra-large capacity and high initial coulombic efficiency. Green Energy&Environment, 2022, 7(5): 1071-1083. doi: 10.1016/j.gee.2021.01.007

Carbonized waste milk powders as cathodes for stable lithium–sulfur batteries with ultra-large capacity and high initial coulombic efficiency

doi: 10.1016/j.gee.2021.01.007
  • To explore the natural resources as sustainable precursors offers a family of green materials. The use of bio-waste precursors especially the remaining from food processing is a scalable, highly abundant, and cost-effective strategy. Exploring waste materials is highly important especially for new materials discovery in emerging energy storage technologies such as lithium sulfur batteries (LSBs). Herein, waste milk powder is carbonized and constructed as the sulfur host with the hollow micro-/mesoporous framework, and the resulting carbonized milk powder and sulfur (CMP/S) composites are employed as cathodes for LSBs. It is revealed that the hollow micro-/mesoporous CMP/S framework can not only accommodate the volume expansion but also endow smooth pathways for the fast diffusion of electrons and Li-ions, leading to both high capacity and long cycling stability. The CMP/S composite electrode with 56 wt% loaded sulfur exhibits a remarkable initial capacity of 1596 mAh g-1 at 0.1 C, corresponding to 95% of the theoretical capacity. Even at a rate of 1 C, it maintains a high capacity of 730 mAh g-1 with a capacity retention of 72.6% after 500 cycles, demonstrating a very low capacity fading of only 0.05% per cycle. Importantly, the Coulombic efficiency is always higher than 96% during all the cycles. The only used source material is expired waste milk powders in our proposal. We believe that this “trash to treasure” approach will open up a new way for the utilization of waste material as environmentally safe and high performance electrodes for advanced LSBs.

     

  • • Rational synthesis of micro-mesoporous framework of carbonized milk powder with high specific surface area of 1020 m2/g. • The LSB demonstrates high initial coulombic efficiency (96%), ultra-large capacity, and long-term cyclic life. • The “trash-to-treasure” approach will open up a new way for the utilization of waste biomaterial in advanced LSBs.
  • loading
  • [1]
    Y. L. Yuan, B. E. Jia, H. C. Tang, L. X. Chen, Y. -J. Zeng, Q. H. Zhang, Q. G. He, L. Jiao, J. X. Leng, J. G. Lu, Nano-Micro Lett. 11:42 (2019) 1-12. https://doi.org/10.1007/s4082 0-019-0274-0
    [2]
    H. C. Tang, L. Meng, W. C. Wang, J. G. Lu, Y.-J. Zeng, T. Q. Huang, C. Gao, Adv. Mater. Technol. 3 (2018) 1800074 1-8. https://doi.org/10.1002/admt.201800074
    [3]
    Y. Zhong, D. Chao, S. Deng, J. Zhan, R. Fang, Y. Xia, Y. Wang, X. Wang, X. Xia, J. Tu, Adv. Funct. Mater. 28 (2018) 1706391 1-9. https://doi.org/10.1002/adfm.201706391
    [4]
    L. Borchardt, M. Oschatz, S. Kaskel, Chemistry. 22 (2016) 7324-7351. https://doi.org/10.1002/chem.201600040
    [5]
    R. Kumar, J. Liu, J. Y. Hwang, Y-K. Sun, J. Mater. Chem. A. 6 (2018) 11582-11605. https://doi.org/10.1039/C8TA01483C
    [6]
    Z. Qiao, F. Zhou, Q. Zhang, F. Pei, H. Zheng, W. Xu, P. Liu, Y. Ma, Q. Xie, L. Wang, X. Fang, D.-L. Peng, Energy Storage Mater. 23 (2019) 62-71. https://doi.org/10.1016/j.ensm.2019.05.032
    [7]
    Y. Yang, G. Yu, J. J. Cha, H. Wu, M. Vosgueritchian, Y. Yao, Z. Bao, Y. Cui, ACS Nano. 5 (2011) 9187-9193. https://doi.org/10.1021/nn203436j
    [8]
    P. Gao, S. Xu, Z. Chen, X. Huang, Z. Bao, C. Lao, G. Wu, Y. Mei, ACS Appl. Mater. Interfaces 10 (2018) 3938-3947. https://doi.org/10.1021/acsami.7b16174
    [9]
    J. Yan, X. Liu, X. Wang, B. Li, J. Mater. Chem. A. 3 (2015) 10127-10133. https://doi.org/10.1039/c5ta00286a
    [10]
    T. Dhawa, S. Chattopadhyay, M. Sreemany, G. De, S. Mahanty, J. Chem. Sci. 130 (2018) 109. https://doi.org/10.1007/s12039-018-1518-0
    [11]
    Y. Wang, J. Y. Huang, X. Y. Wang, X. L. Xu, J. G. Lu, Y. Tian, Z. Z. Ye, H. C. Tang, S.-T. Lee, Y. Y. Lu, Adv. Funct. Mater. 30 (2020) 1910331. https://doi.org/10.1002/adfm.201910331
    [12]
    J. Zhang, J. Bae, S.-H. Chung, W. K. Zhang, A. Manthiram, G. H. Yu, Small Methods 2 (2018) 1-32
    [13]
    J. Sun, J. Ma, J. Fan, J. Pyun, J. Geng, APL Mater. 7 (2019) 020994. https://doi.org/10.1063/1.5081915
    [14]
    W. Ai, J. Li, Z. Du, C. Zou, H. Du, X. Xu, Y. Chen, H. Zhang, J. Zhao, C. Li, W. Huang, T. Yu, Nano Res. 11 (2018) 4562-4573. https://doi.org/10.1007/s12274-018-2036-6
    [15]
    Z. Yuan, H.-J. Peng, J.-Q. Huang, X.-Y. Liu, D.-W. Wang, X.-B. Cheng, Q. Zhang, Adv. Funct. Mater. 24 (2014) 6105-6112. https://doi.org/10.1002/adfm.201401501
    [16]
    J. Zheng, G. Ji, X. Fan, J. Chen, Q. Li, H. Wang, Y. Yang, K. C. DeMella, S. R. Raghavan, C. Wang, Adv. Energy Mater. 9 (2019) 1803774. https://doi.org/10.1002/aenm.201803774
    [17]
    S. Zeng, L. Li, L. Xie, D. Zhao, N. Zhou, N. Wang, S. Chen, Carbon. 122 (2017) 106-113. https://doi.org/10.1016/j.carbon.2017.06.036
    [18]
    Y. Zhong, X. Xia, S. Deng, J. Zhan, R. Fang, Y. Xia, X. Wang, Q. Zhang, J. Tu, Adv. Energy Mater. 8 (2018) 1701110. https://doi.org/10.1002/aenm.201701110
    [19]
    Y. Wang, J. Y. Huang, J. G. Lu, B. Lu, Z. Z. Ye, Electrochim. Acta. 321 (2019) 134694. https://doi.org/10.1016/j.electacta.2019.134694
    [20]
    J. Zhang, J. Xiang, Z. Dong, Y. Liu, Y. Wu, C. Xu, G. Du, Electrochim. Acta. 116 (2014) 146-151. https://doi.org/10.1016/j.electacta.2013.11.035
    [21]
    A. Fu, C. Wang, F. Pei, J. Cui, X. Fang, N. Zheng, Small 15 (2019) 1804786. https://doi.org/10.1002/smll.201804786
    [22]
    S. Qi, J. Sun, J. Ma, Y. Sun, K. Goossens, H. Li, P. Jia, X. Fan, C. W. Bielawski, J. Geng, Nanotechnology 30 (2019) 024001. https://doi.org/10.1088/1361-6528/aae6e5
    [23]
    A. Eftekhari, D.-W. Kim, J. Mater. Chem. A. 5 (2017) 17734-17776. https://doi.org/10.1039/c9ta90300c
    [24]
    F. Chen, J. Yang, T. Bai, B. Long, X. Zhou, Electrochim. Acta. 192 (2016) 99-109. https://doi.org/10.1016/j.electacta.2016.01.192
    [25]
    M. M. Vukcevic, A. M. Kalijadis, T. M. Vasiljevic, B. M. Babic, Z. V. Lausevic, M. D. Lausevic, Microporous Mesoporous Mater. 214 (2015) 156-165. https://doi.org/10.1016/j.micromeso.2015.05.012
    [26]
    H. Yuan, T. Liu, Y. Liu, J. Nai, Y. Wang, W. Zhang, X. Tao, Chem. Sci. 10 (2019) 7484-7495. https://doi.org/10.1039/c9sc02743b
    [27]
    O. Fromm, A. Heckmann, U. C. Rodehorst, J. Frerichs, D. Becker, M. Winter, T. Placke, Carbon 128 (2018) 147-163. https://doi.org/10.1016/j.carbon.2017.11.065
    [28]
    G. Li, J. Sun, W. Hou, S. Jiang, Y. Huang, J. Geng, Nat. Commun. 7 (2016) 10601. https://doi.org/10.1038/ncomms1060
    [29]
    A. Hamid, M. Abd El-Samad, N.F. Soliman b, H.A. Hanafi, J. Taibah Univ. Sci. 11 (2017), 186-195 https://doi.org/10.1016/j.jtusci.2016.01.005
    [30]
    B. Y. Jin, J. W. Zhang, Y. J. Cai, J. Zhu, J. G. Lu, Y. Hou, Q. G. He, H. B. Xing, X. L. Zhan, F. Q. Chen, Q. H. Zhang, Adv. Energy Mater. 9 (2019) 1902938. https://doi.org/10.1002/aenm.201902938
    [31]
    H. Pan, J. Chen, R. Cao, V. Murugesan, N. N. Rajput, K. S. Han, K. Persson, L. Estevez, M. H. Engelhard, J.-G. Zhang, K. T. Mueller, Y. Cui, Y. Shao, J. Liu, Nat. Energy. 2 (2017) 813-820. https://doi.org/10.1038/s41560-017-0005-z
    [32]
    K. Yang, Q. Gao, Y. Tan, W. Tian, L. Zhu, C. Yang, Microporous Mesoporous Mater. 204 (2015) 235-241. https://doi.org/10.1016/j.micromeso.2014.12.003
    [33]
    Y. Zhong, S. Wang, Y. Sha, M. Liu, R. Cai, L. Li, Z. Shao, J. Mater. Chem. A. 4 (2016) 9526-9535. https://doi.org/10.1039/C6TA03187K
    [34]
    G. D. Park, D. S. Jung, J.-K. Lee, Y. C. Kang, Chem. Eng. J. 373 (2019) 382-392. https://doi.org/10.1016/j.cej.2019.05.038
    [35]
    L. Li, L. Hou, J. Cheng, T. Simmons, F. Zhang, L. T. Zhang, R. J. Linhardt, N. Koratkar, Energy Storage Mater. 15 (2018) 388-395. https://doi.org/10.104921761
    [36]
    B. P. Vinayan, Z. Zhao-Karger, T. Diemant, V. S. Chakravadhanula, N. I. Schwarzburger, M. A. Cambaz, R. J. Behm, C. Kubel, M. Fichtner, Nanoscale 8 (2016) 3296-3306. https://doi.org/10.1039/c5nr04383b
    [37]
    Y. Zhu, G. Xu, X. Zhang, S. Wang, C. Li, G. Wang, J. Alloys Compd. 695 (2017) 2246-2252. https://doi.org/10.1016/j.jallcom.2016.11.075
    [38]
    S. Chen, Z. Wu, J. Luo, X. Han, J. Wang, Q. Deng, Z. Zeng, S. Deng, Electrochim. Acta. 312 (2019) 109-118. https://doi.org/10.1016/j.electacta.2019.04.113
    [39]
    H. Wei, E. F. Rodriguez, A. S. Best, A. F. Hollenkamp, D. Chen, R. A. Caruso, ACS Appl. Mater. Interfaces 11 (2019) 13194-13204. https://doi.org/10.1021/acsami.8b21627
    [40]
    R. Carter, D. Ejorh, K. Share, A. P. Cohn, A. Douglas, N. Muralidharan, T. M. Tovar, C. L. Pint, J. Power Sources 330 (2016) 70-77. https://doi.org/10.1016/j.jpowsour.2016.08.128
    [41]
    H. Pan, J. Chen, R. Cao, V. Murugesan, N. N. Rajput, K.S. Han, K. Persson, L. Estevez, M. H. Engelhard, J-G. Zhang, K-T. Mueller, Y. Cui, Y. Shao, J. Liu, Nat. Energy 2(10) (2017) 813-820. https://doi.org/10.1038/s41560-017-0005-z
    [42]
    Y. Lai, P. Wang, J. Li, K. Zhang, Z. Zhang, J. Electroanal. Chem. 805 (2017) 120-125 https://doi.org/10.1016/j.jelechem.2017.09.065
    [43]
    Z. Su, C.-Jia Tong, D.-Qing He, C. Lai, L.-Min Liu, C. Wang, K. Xi. J. Mater. Chem. A, 2016, 4, 8541 DOI: 10.1039/c6ta00706f
    [44]
    J-W. Choi, J-K Kim, G. Cheruvally, J-H. Ahn, H-J. Ahn, K-W. Kim, Electrochim. Acta 52 (2007) 2075-2082 https://doi.org/10.1016/j.electacta.2006.08.016
    [45]
    L. Yan, J. Yu, J. Houston, N. Flores, H. Luo, Green Energy Environ. 2 (2017) 84-99. https://doi.org/10.1016/j.gee.2017.03.002
    [46]
    B.-C. Yu, J.-W. Jung, K. Park, J. B. Goodenough, Energy Environ. Sci 10 (2017) 86-90. https://doi.org/10.1039/c6ee02770a
    [47]
    S. Chen, Y. Gao, Z. Yu, M. L. Gordin, J. Song, D. Wang, Nano Energy 31 (2017) 418-423 https://doi.org/10.1016/j.nanoen.2016.11.057
    [48]
    R. Xu, I. Belharouak, J. C. M. Li, X. Zhang, I. Bloom, J. Bareno, Adv. Energy Mater. 3 (2013) 833-838 DOI: 10.1002/aenm.201200990
    [49]
    R. Xu, I. Belharouak, X. Zhang, R. Chamoun, C. Yu, Y. Ren, A. Nie, R. Shahbazian-Yassar, J. Lu, J. Li, K. Amine, ACS Appl. Mater. Interfaces 6, 24 (2014) 21938-21945 DOI: 10.1021/am504763p
    [50]
    J. Yan, X. Liu, B. Li, Adv. Sci. 3 (2016) 1600101. https://doi.org/10.1002/advs.201600101
    [51]
    Y. Tian, Z. Wang, J. Fu, K. Xia, J. Lu, H. Tang, K. Rabia, H. Chen, Z. Zhu, Q. Zhang, Y. J. Zeng, Z. Ye, Chem. Commun. 55 (2019) 10960-10963. https://doi.org/10.1039/c9cc05069h
    [52]
    H. W. Chen, H. J. Zhu, Y. C. Guo, R. Hu, R. Khatoon, L. X. Chen, Y. -J. Zeng, L. Jiao, J. X. Leng, J. G. Lu, Electrochim. Acta. 310 (2019)203-212. https://doi.org/10.1016/j.electacta.2019.04.134
    [53]
    G. L. Xu, Y. F. Xu, J. C. Fang, X. X. Peng, F. Fu, L. Huang, J. T. Li, S. G. Sun, ACS Appl. Mater. Interfaces 5 (2013) 10782-10793. https://doi.org/10.1021/am402970x
    [54]
    F. Yang, D. Wang, Y. Zhao, K-L. Tsui, S. J. Bae, Energy 145 (2018) 486-495 https://doi.org/10.1016/j.energy.2017.12.144
    [55]
    J. Liang, Z-H. Sun, F. Li, H-M. Cheng, Energy Stor. Mater. 2 (2016) 76-106 https://doi.org/10.1016/j.ensm.2015.09.007
    [56]
    M. Wang, X. Xia, Y. Zhong, J. Wu, R. Xu, Z. Yao, D. Wang, W. Tang, X. Wang, J. Tu, Chemistry 25 (2019) 3710-3725. https://doi.org/10.1002/chem.20183153
    [57]
    T-Z. Hou, W-T. Xu, X. Chen, H-J. Peng, J-Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 56 (2017) 8178 -8182 DOI: 10.1002/anie.201704324
    [58]
    J. Lei, T. Liu, J. j. Chen, M. Zheng, Q. Zhang, B. Mao, Q. Dong, Chem 6 (2020) 2533-2557.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (169) PDF downloads(18) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return