Volume 7 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
Sen Luan, Wei Li, Zanwu Guo, Wenxiu Li, Xiaojian Hou, Yi Song, Ran Wang, Qian Wang. Synthesis of ordered hierarchically mesoporous/microporous carbon materials via compressed CO2 for fructose-to-HMF transformation. Green Energy&Environment, 2022, 7(5): 1033-1044. doi: 10.1016/j.gee.2021.01.005
Citation: Sen Luan, Wei Li, Zanwu Guo, Wenxiu Li, Xiaojian Hou, Yi Song, Ran Wang, Qian Wang. Synthesis of ordered hierarchically mesoporous/microporous carbon materials via compressed CO2 for fructose-to-HMF transformation. Green Energy&Environment, 2022, 7(5): 1033-1044. doi: 10.1016/j.gee.2021.01.005

Synthesis of ordered hierarchically mesoporous/microporous carbon materials via compressed CO2 for fructose-to-HMF transformation

doi: 10.1016/j.gee.2021.01.005
  • Well-ordered hierarchically mesoporous/microporous carbon materials have been successfully fabricated by using dual soft-templating approach through compressed CO2. Pluronic F127 and different type of surfactants, including nonionic, cationic, and anionic surfactants, were used as dual templates to investigate the influence on the morphology and nanostructure of the as-prepared carbon samples. TEM, SEM, N2 sorption, wide-angle and small-angle XRD analysis were employed to reveal the well-ordered hierarchically micro-mesoporous structure with 2D hexagonal symmetry by using compressed CO2. The prepared HPC samples with different pressures as the catalyst carriers have been functioned by chlorosulfonic acid for the fructose conversion into HMF. Chlorosulfonic acid concentration, catalyst dosage and reaction temperature have been optimized for fructose-to-HMF transformation with the obtained catalyst. The performances of as-made HPC–SO3H samples in HMF yield and reaction rate of fructose-to-HMF transformation have been investigated. The stability of the samples was also conducted in the dehydration of fructose to HMF for five cycles. The possible catalytic mechanism by using hierarchically porous carbon materials as catalyst support for fructose-to-HMF transformation was proposed.

     

  • • Well-ordered hierarchically porous carbon (HPC) was fabricated via dual soft-templating approach with compressed CO2. • The pore structures could be easily controlled by adjusting CO2 pressure. • The sulfonated HPC sample exhibited the excellent performance in the fructose-to-HMF transformation.
  • loading
  • [1]
    T. J. Bandosz, T.-Z. Ren, Carbon 118 (2017) 561-577
    [2]
    M. Xu, Q. Yu, Z. Liu, J. Lv, S. Lian, B. Hu, L. Mai, L. Zhou, Nanoscale 10 (2018) 21604-21616
    [3]
    P. Zhang, H. Zhu, S. Dai, ChemCatChem 7(2015), 2788-2805
    [4]
    C. Zhu, H. Li, S. Fu, D. Du, Y. Lin, Chem. Soc. Rev. 45 (2016) 517-531
    [5]
    S. Gupta, N.-H. Tai, J. Mater. Chem. A, 4 (2016) 1550-1565
    [6]
    J. Lee, J. Kim, T. Hyeon, Adv. Mater. 18 (2006) 2073-2094
    [7]
    C. Liang, Z. Li, S. Dai, Angew. Chem. Int. Ed. 47 (2008) 3696-3717
    [8]
    L. Estevez, D. Barpaga, J. Zheng, S. Sabale, R. L. Patel, J.-G. Zhang, B. P. McGrail, R. K. Motkuri, Ind. Eng. Chem. Res. 57 (2018) 1262-1268
    [9]
    Q. Guo, C. Chen, Z. Li, X. Li, H. Wang, N. Feng, H. Wan, G. Guan, Chem. Eng. J. 371 (2019) 414-423
    [10]
    L. Chen, T. Ji, L. Mu, Y. Shi, H. Wang, J. Zhu, J. Environ. Manage. 196 (2017) 168-177
    [11]
    J. H. Kim, J. Y. Oh, J. M. Lee, Y. C. Jeong, S. H. So, Y. S. Cho, S. Nam, C. R. Park, S. J. Yang, Carbon 126 (2018) 190-196
    [12]
    Y. Yan, Y.-X. Yin, Y.-G. Guo, L.-J. Wan, Adv. Energy Mater. 4 (2014) 1301584
    [13]
    J.-G. Wang, H. Liu, X. Zhang, X. Li, X. Liu, F. Kang, Small 14 (2018) 1703950
    [14]
    Z. Pei, H. Li, Y. Huang, Q. Xue, Y. Huang, M. Zhu, Z. Wang, C. Zhi, Energy Environ. Sci. 10 (2017) 742-749
    [15]
    Y. Guo, Z. Zeng, Y. Zhu, Z. Huang, Y. Cui, J. Yang, Appl. Catal. B:Environ. 220 (2018) 635-644
    [16]
    Q. Wang, N. Tsumori, M. Kitta, Q. Xu, ACS Catal. 8 (2018) 12041-12045
    [17]
    R. Zhao, W. Xia, C. Lin, J. Sun, A. Mahmood, Q. Wang, B. Qiu, H. Tabassum, R. Zou, Carbon 114 (2017) 284-290
    [18]
    K. Wan, A.-D. Tan, Z.-P. Yu, Z.-X. Liang, J.-H. Piao, P. Tsiakaras, Appl. Catal. B:Environ. 209 (2017) 447-454
    [19]
    X. Yang, L. Chen, Y. Li, J. Rooke, C. Sanchez, B, Su, Chem. Soc. Rev. 46 (2017) 481-558
    [20]
    X. Yang, L. Chen, Y. Li, J. Rooke, C. Sanchez, B, Su, Chem. Soc. Rev. 42 (2013) 3721-3739
    [21]
    M. Kruk, Acc. Chem. Res. 45 (2012) 1678-1687
    [22]
    L. Song, D. Feng, C.G. Campbell, D. Gu, A.M. Forster, K.G. Yager, N. Fredin, H.-J. Lee, R.L. Jones, D. Zhao, B.D. Vogt, J. Mater. Chem. 20 (2010) 1691-1701
    [23]
    R. Liu, Y. Shi, Y. Wan, Y. Meng, F. Zhang, D. Gu, Z. Chen, B. Tu, D. Zhao, J. Am. Chem. Soc. 128 (2006) 11652-11662
    [24]
    Z. Wang, A. Stein, Chem. Mater. 20 (2008) 1029-1040
    [25]
    J. Cheng, Y. Wang, C. Teng, Y. Shang, L. Ren, B. Jiang, Chem. Eng. J. 242 (2014) 285-293
    [26]
    Y. Wang, H. Liu, K. Wang, S. Song, P. Tsiakaras, Appl. Catal. B:Environ. 210 (2017) 57-66
    [27]
    X. Huang, W. Li, S. Li, C. Wang, M. Zhang, L. Sen, X. Hou, Q. Wang, Soft matter 13 (2017) 7505-7513
    [28]
    J. L. Zhang, B. X. Han, Y. J. Zhao, J. S. Li, G. Y. Yang, Chem.-Eur. J. 17 (2011) 4266-4272
    [29]
    Y. J. Zhao, J. L. Zhang, W. Li, C. X. Zhang, B. X. Han, Chem. Commun. 17 (2009) 2365-2367
    [30]
    Y. J. Zhao, J. L. Zhang, B. X. Han, J. L. Song, J. S. Li, Q. Wang, Angew. Chem., Int. Ed. 50 (2011) 636-639
    [31]
    W. Fan, X. Tong, F. Farnia, B. Yu, Y. Zhao, Chem. Mater. 29 (2017) 29, 5693-5701
    [32]
    M. Zhang, Y. Song, W. Li, X. Huang, C. Wang, T. Song, X. Hou, S. Luan, T. Wang, T. Wang, Q. Wang, Inorg. Chem. Front. 6 (2019) 1141-1151
    [33]
    L. Sun, H. Zhou, L. Li, Y. Yao, H. Qua, C. Zhang, S. Liu, Y. Zhou, ACS Appl. Mater. Interfaces 2017, 9, 31, 26088-26095
    [34]
    O. Sel, B. M. Smarsly, Hierarchically Struct. Porous Mater., 2012, 41-53
    [35]
    J. Wang, Z. Zhang, S. Jin, X. Shen, Fuel 192 (2017) 102-107
    [36]
    J. Zhao, C. Zhou, C. He, Y. Dai, X. Jia, Y. Yang, Catal. Today 264 (2016) 123-130
    [37]
    H. Hafizi, A. Najafi Chermahini, M. Saraji, G. Mohammadnezhad, Chem. Eng. J. 294 (2016) 380-388
    [38]
    L. Gan, L. Lyu, T. Shen, S. Wang, Appl. Catal. A:Gen. 574 (2019) 132-143
    [39]
    M. Du, A.M. Agrawal, S. Chakraborty, S.J. Garibay, R. Limvorapitux, B. Choi, S.T. Madrahimov, S.T. Nguyen, ACS Sustain. Chem. Eng. 7 (2019) 8126-8135
    [40]
    Y. Leshkov, J. Chheda, J. Dumesic, Science 312 (2006)1933-1937
    [41]
    J. Chheda, Y. Leshkova, J. Dumesic, Green Chem. 9 (2007) 342-350
    [42]
    Y. Yang, C.-w. Hu, M.M. Abu-Omar, Green Chem. 14 (2012) 509-513
    [43]
    H. Zhao, J. Holladay, H. Brown, Z. Zhang, Science 316 (2007) 1597-1600
    [44]
    C. Antonetti, M. Melloni, D. Licursi, S. Fulignati, E. Ribechini, S. Rivas, J. Parajo, F. Cavani, A. Gallettiab, Appl. Catal. B:Environ. 206 (2017) 364-377
    [45]
    Z. Cao, Z. Fan, Y. Chen, M. Li, T. Shen, C. Zhu, H. Ying, Appl. Catal. B:Environ. 244 (2019) 170-177
    [46]
    S. Hu, Z. Zhang, Y. Zhou, B. Han, H. Fan, W. Li, J. Song, Y. Xie, Green Chem. 10 (2008) 1280
    [47]
    J. Chen, K. Li, L. Chen, R. Liu, X. Huang, D. Ye, Green Chem. 16 (2014) 2490-2499
    [48]
    Z. Hu, Y. Peng, Y. Gao, Y. Qian, S. Ying, D. Yuan, S. Horike, N. Ogiwara, R. Babarao, Y. Wang, N. Yan, D. Zhao, Chem. Mater. 28 (2016) 2659-2667
    [49]
    L. Wang, J. Zhang, S. Yang, Q. Sun, L. Zhu, Q. Wu, H. Zhang, X. Meng, F.-S. Xiao, J. Mater. Chem. A 1 (2013) 9422
    [50]
    L. Wang, J. Zhang, L. Zhu, X. Meng, F. Xiao, J. Energy Chem. 22 (2013) 241-244
    [51]
    R. Zhong, B. Selsc, Appl. Catal. B:Environ. 236 (2018) 518-545
    [52]
    J. Dai, L. Zhu, D. Tang, X. Fu, J. Tang, X. Guo, C. Hu, Green Chem. 19 (2017) 1932-1939
    [53]
    R. Zhong, F. Yu, W. Schutyser, Y. Liao, F. Clippel, L. Peng, B. Sels, Appl. Catal. B:Environ. 206 (2017) 74-88
    [54]
    L. Konwar, P. Mäki-Arvela, J. Mikkola, Chem. Rev. 119 (2019) 11576-11630
    [55]
    F. Morales-Leal, J. Rosa, C. Lucio-Ortiz, D. Rio, C. Maldonado, S. Wi, L. Casabianca, C. Garcia, Appl. Catal. B:Environ. 244 (2019) 250-261
    [56]
    Y. Liang, Z. Li, R. Fu, Di. Wu, J. Mater. Chem. A, 2013, 1, 3768-3773
    [57]
    K. Dong, J. Zhang, W. Luo, L. Su, Z. Huang, Chem. Eng. J. 334 (2018) 1055-1064
    [58]
    S. Tanaka, N. Nishiyama, Y. Egashira, K. Ueyamaa, Chem. Commun. 16 (2005) 2125-2127
    [59]
    Y. Lv, F. Zhang, Y. Dou, Y. Zhai, J. Wang, H. Liu, Y. Xia, B. Tu, D. Zhao, J. Mater. Chem. 22 (2012) 93-99
    [60]
    X. Hou, X. Huang, S. Li, W. Li, S. Luan, W. Li, Z. Guo, Q. Wang, ACS Sustain. Chem. Eng. 7 (2019) 13845-13855
    [61]
    C. Chen, G. Xu, X. Wei, L. Yang, J. Mater. Chem. A 4 (2016) 9900-9909
    [62]
    G. Tsilomelekis, T. R. Josephson, V. Nikolakis, S. Caratzoulas, ChemSusChem 7 (2014) 117-126
    [63]
    S. H. Mushrif, S. Caratzoulas, D. G. Vlachos, Phys. Chem. Chem. Phys., 14 (2012) 2637-2644
    [64]
    F. Huang, W. Li, Q. Liu, T. Zhang, S. An, D. Li, X. Zhu, Fuel Process. Technol. 181 (2018) 294-303
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (187) PDF downloads(11) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return