Volume 7 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Huanhuan Yang, Liguo Wang, Shuang Xu, Yan Cao, Peng He, Jiaqiang Chen, Zheng Zheng, Huiquan Li. Green and selective hydrogenation of aromatic diamines over the nanosheet Ru/g-C3N4-H2 catalyst prepared by ultrasonic assisted impregnation-deposition method. Green Energy&Environment, 2022, 7(6): 1361-1376. doi: 10.1016/j.gee.2021.01.003
Citation: Huanhuan Yang, Liguo Wang, Shuang Xu, Yan Cao, Peng He, Jiaqiang Chen, Zheng Zheng, Huiquan Li. Green and selective hydrogenation of aromatic diamines over the nanosheet Ru/g-C3N4-H2 catalyst prepared by ultrasonic assisted impregnation-deposition method. Green Energy&Environment, 2022, 7(6): 1361-1376. doi: 10.1016/j.gee.2021.01.003

Green and selective hydrogenation of aromatic diamines over the nanosheet Ru/g-C3N4-H2 catalyst prepared by ultrasonic assisted impregnation-deposition method

doi: 10.1016/j.gee.2021.01.003
  • In this study, nanosheet g-C3N4-H2 was prepared by thermal exfoliation of bulk g-C3N4 under hydrogen. A series of Ru/g-C3N4-H2 catalysts with Ru species supported on the nanosheet g-C3N4-H2 were synthesized via ultrasonic assisted impregnation-deposition method. Ultrafine Ru nanoparticles (<2 nm) were highly dispersed on nanosheet g-C3N4-H2. Strong interaction due to Ru-Nx coordination facilitated the uniform distribution of Ru species. Meanwhile, the involvement of surface basicity derived from abundant nitrogen sites was favourable for enhancing the selective hydrogenation performance of bi-benzene ring, i.e., almost complete 4,4′-diaminodiphenylmethane (MDA) conversion and >99% 4,4′-diaminodicyclohexylmethane selectivity, corresponding to a reaction activity of 35.7 molMDA molRu-1 h-1. Moreover, the reaction activity of catalyst in the fifth run was 36.5 molMDA molRu-1 h-1, which was comparable with that of the fresh one. The computational results showed that g-C3N4 as support was favorable for adsorption and dissociation of H2 molecules. Moreover, the substrate scope can be successfully expanded to a variety of other aromatic diamines. Therefore, this work provides an efficient and green catalyst system for selective hydrogenation of aromatic diamines.

     

  • loading
  • [1]
    S. Behar, N.-A. Gómez-Mendoza, M.-Á. Gómez-García, D. Świerczyński, F. Quignard, N. Tanchoux, Appl. Catal. A-Gen. 504 (2015) 203–210.
    [2]
    J. Łojewska, A. Kołodziej, J. Zak, J. Stoch, Appl. Catal. B Environ. 105 _ (2005) 655–661.
    [3]
    S.A. Hosseini, A. Niaei, D. Salari, S.R. Nabavi, Ceram. Int. 38 (2012) 1655–1661.
    [4]
    J. Zhong, Y. Zeng, D. Chen, S. Mo, M. Zhang, M. Fu, J. Wu, Z. Su, P. Chen, D. Ye, J. Hazard. Mater. 386 (2020) 121957.
    [5]
    Y. Zhang, M. Wua, Y. Wang, Y. Kwok, W. Pan, W. Szeto, H. Huang, D.Y.C. Leung, Appl. Catal. B Environ. 28 (2019) 225–231.
    [6]
    S.A. Hosseini, M.T. Sadeghi, A. Alemi, A. Niaei, D. Salari, L. KafiAhmadi, Chinese J. Catal. 31 (2010) 747–750.
    [7]
    U. Menon, V.V. Galvita, G.B. Marin, J. Catal. 283 (2011) 1–9.
    [8]
    L. Zhao, Z. Zhang, Y. Li, X. Leng, T. Zhang, F. Yuan, X. Niu, Y. Zhu, Appl. Catal. B Environ. 245 (2019) 502–512.
    [9]
    F. Dong, W. Han, H. Zhao, G. Zhang, Z. Tang, Nanoscale 11 (2019) 9937–9948.
    [10]
    C. Zhang, J. Wang, S. Yang, H. Liang, Y. Men, J. Colloid Interface Sci. 539 (2019) 65–75.
    [11]
    X. Wang, Y. Liu, T. Zhang, Y. Luo, Z. Lan, K. Zhang, J. Zuo, L. Jiang, R. Wang, ACS Catal. 7 (2017) 1626–1636.
    [12]
    Z. Zhang, Z. Fan, H. Guo, W. Fang, M. Chen, W. Shangguan, Catal. Today 332 (2019) 139–143.
    [13]
    M. Luo, Y. Cheng, X. Peng, W. Pan, Chem. Eng. J. 369 (2019) 758–765.
    [14]
    X. Jiang, W. Xu, S. Lai, X. Chen, RSC Adv. 9 (2019) 6533–6541.
    [15]
    S. Zhao, F. Hu, J. Li, ACS Catal. 6 (2016) 3433–3441.
    [16]
    S. Li, H. Wang, W. Li, X. Wu, W. Tang, Y. Chen, Appl. Catal. B Environ. 166–167 (2015) 260–269.
    [17]
    Y. Li, F. Liu, Y. Fan, G. Cheng, W. Song, J. Zhou, Appl. Surf. Sci. 462 (2018) 207–212.
    [18]
    X. Fu, Y. Liu, W. Yao, Z. Wu, Catal. Commun. 83 (2016) 22–26.
    [19]
    H. Huang, Y. Xu, Q. Feng, D.Y.C. Leung, Catal. Sci. Technol. 5 (2015) 2649–2669.
    [20]
    J. Mei, J. Xie, Z. Qu, Y. Ke, X. Hu, N. Yan, Mol. Catal. 461 (2018) 60–66.
    [21]
    H. Peng, T. Dong, L. Zhang, C. Wang, W. Liu, J. Bao, X. Wang, N. Zhang, Z. Wang, P. Wu, P. Zhang, S. Dai, Appl. Catal. B Environ. 256 (2019) 117807.
    [22]
    C.H. Wang, S.S. Lin, C.L. Chen, H.S. Weng, Chemosphere 64 (2006) 503–509.
    [23]
    Z. Sihai, F. Puleo, J.M. Garcia-Vargas, L. Retailleau, C. Descorme, L.F. Liotta, J.L. Valverde, S. Gil, Appl. Catal. B Environ. 209 (2017) 689–700.
    [24]
    F. Liu, M. Zeng, Y. Li, Y. Yang, M. Mao, X. Zhao, Adv. Funct. Mater. 26 (2016) 4518–4526.
    [25]
    Y. Xia, L. Xia, Y. Liu, T. Yang, J. Deng, H. Dai, J. Environ. Sci. 256 (2019) 276–288.
    [26]
    H. Zhang, S. Sui, X. Zheng, R. Cao, P. Zhang, Appl. Catal. B Environ. 257 (2019) 117878.
    [27]
    Y. Wang, H. Arandiyan, Y. Liu, Y. Liang, Y. Peng, S. Bartlett, H. Dai, S. Rostamnia, J. Li, ChemCatChem 10 (2018) 3429–3434.
    [28]
    S. Zhao, T. Liu, D. Hou, W. Zeng, B. Miao, S. Hussain, X. Peng, M.S. Javed, Appl. Surf. Sci. 356 (2015) 259–265.
    [29]
    T. Chang, Z. Shen, Y. Huang, J. Lu, D. Ren, J. Sun, J. Cao, H. Liu, Chem. Eng. J. 348 (2018) 15–25.
    [30]
    Q. Zhao, L. Liu, R. Liu, L. Zhu, Chem. Eng. J. 353 (2018) 311–318.
    [31]
    H.S. Saroyan, A. Arampatzidou, D. Voutsa, N.K. Lazaridis, E.A. Deliyanni, Colloid. Surface. A 566 (2019) 166–175.
    [32]
    C. He, J. Li, P. Li, J. Cheng, Z. Hao, Z.-P. Xu, Appl. Catal. B Environ. 96 (2010) 466–475.
    [33]
    J. Wang, J. Li, C. Jiang, P. Zhou, P. Zhang, J. Yu, ACS Appl. Mater. Interfaces 204 (2017) 147–155.
    [34]
    B.A. Pinaud, Z. Chen, D.N. Abram, T.F. Jaramillo, J. Phys. Chem. C 21 (2011) 11830–11838.
    [35]
    L. Yue, C. He, X. Zhang, P. Li, Z. Wang, H. Wang, Z. Hao, J. Hazard. Mater. 244–245 (2013) 613–620.
    [36]
    G. Liu, Y. Tian, B. Zhang, L. Wang, X. Zhang, J. Hazard. Mater. 367 (2019) 568–576.
    [37]
    Z. Hao, Z. Shen, Y. Li, H. Wang, L. Zheng, R. Wang, G. Liu, S. Zhan, Angew. Chem. Int. Ed. 58 (2019) 6351–6356.
    [38]
    H. Xia, J. Feng, H. Wang, M.O. Lai, L. Lu, J. Power Sources 195 (2010) 4410–4413.
    [39]
    Y. Wan, W. Zhao, Y. Tang, L. Li, H. Wang, Y. Cui, J. Gu, Y. Li, J. Shi, Appl. Catal. B Environ. 148–149 (2014) 114–122.
    [40]
    M. Wu, W. Zhan, Y. Guo, Y. Guo, Y. Wang, L. Wang, G. Lu, Appl. Catal. A Gen. 523 (2016) 97–106.
    [41]
    X. Cui, Y. Xu, L. Chen, M. Zhao, S. Yang, Y. Wang, Appl. Catal. B Environ. 244 (2019) 957–964.
    [42]
    X.J. Zhang, Z.A. Ma, Z.X. Song, H. Zhao, W. Liu, M. Zhao, J.G. Zhao, J. Phys. Chem. C 123 (2019) 17255–17264.
    [43]
    X.L. Zou, J.F. Chen, Z.B. Rui, H.B. Ji, Appl. Catal. B Environ. 273 (2020) 119071.
    [44]
    J.Y. Parka, Y. Zhang, S. Hoon Jooc, Y. Jung, G.A. Somorjai, Catal. Today 181 (2012) 133–137.
    [45]
    Z. Feng, M. Zhang, Q. Ren, S. Mo, R. Peng, D. Yan, M. Fu, L. Chen, J. Wu, D. Ye, Chem. Eng. J. 369 (2019) 18–25.
    [46]
    Z. Rui, C. Chen, Y. Lu, H. Ji, Chinese J. Chem. Eng. 22 (2014) 882–887.
    [47]
    K.-J. Kim, S.-I. Boo, H.-G. Ahn, J. Ind. Eng. Chem. 15 (2009) 92–97.
    [48]
    J. Zhang, C. Rao, H. Peng, C. Peng, L. Zhang, X. Xu, W. Liu, Z. Wang, N. Zhang, X. Wang, Chem. Eng. J. 334 (2018) 10–18.
    [49]
    M. Popova, Á. Szegedi, Z. Cherkezova-Zheleva, A. Dimitrova, I. Mitov, Appl. Catal. A Gen. 381 (2010) 26–35.
    [50]
    H.-F. Lu, Y. Zhou, W.-F. Han, H.-F. Huang, Y.-F. Chen, Catal. Sci. Technol. 3 (2013) 1480–1484.
    [51]
    T. Gan, X. Chu, H. Qi, W. Zhang, Y. Zou, W. Yan, G. Liu, Appl. Catal. B Environ. 257 (2019) 117943.
    [52]
    H. Wang, W. Yang, P. Tian, J. Zhou, R. Tang, S. Wu, Appl. Catal. A Gen. 529 (2017) 60–67.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (80) PDF downloads(46) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return