Volume 7 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
Yu Cui, Mengyuan Li, Xiaoli Zhang, Sufan Wang, Yucheng Huang. Ga2OSe monolayer: A promising hydrogen evolution photocatalyst screened from two-dimensional gallium chalcogenides and the derived janus. Green Energy&Environment, 2022, 7(5): 1045-1052. doi: 10.1016/j.gee.2021.01.002
Citation: Yu Cui, Mengyuan Li, Xiaoli Zhang, Sufan Wang, Yucheng Huang. Ga2OSe monolayer: A promising hydrogen evolution photocatalyst screened from two-dimensional gallium chalcogenides and the derived janus. Green Energy&Environment, 2022, 7(5): 1045-1052. doi: 10.1016/j.gee.2021.01.002

Ga2OSe monolayer: A promising hydrogen evolution photocatalyst screened from two-dimensional gallium chalcogenides and the derived janus

doi: 10.1016/j.gee.2021.01.002
  • Using first-principles calculations, hydrogen evolution reaction (HER) activity on two-dimensional (2D) gallium chalcogenides monolayers GaX (X = O, S, Se, and Te) as well as the derived Janus monolayers Ga2XY (X≠Y, X/Y = O, S, Se, and Te) were systematically examined. It was found that Ga2OSe Janus monolayer with a 0.3% strain has the lowest ΔGH* of 0.19 eV (modified to -0.01 eV including the solvation effect) because (i) O is the most electronegative among X/Y atoms, (ii) the Ga2OSe monolayer has a larger lattice parameter with respect to GaO monolayer, and (iii) the built-in electric field is enhanced after H adsorption. The enhanced H adsorption with the lattice stretching is a result of the weaker Ga–O bond strength before H adsorption and the reduced electron fillings of anti-bonding molecular orbital formed by H 1s and O 2p orbitals after H adsorption. The O-pz band center can be served as a descriptor to describe the HER activity trend for these p-block materials. Moreover, Ga2OSe monolayer has appropriate band alignment, distinguished optical absorption coefficient (105 cm-1), low exciton binding energy (0.71 eV), and the spontaneous HER process, indicating that it is a highly potential candidate for near-infrared photocatalyst for hydrogen production. Our research provides a novel paradigm that forming Janus structure can effectively tune the HER activity, which would guide the searching for excellent HER photocatalysts for clean hydrogen production.

     

  • loading
  • [1]
    Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y. Catal. Today, 139 (2009), 244-260
    [2]
    Roger, I.; Shipman, M. A.; Symes, M. D. Nature Reviews Chemistry, 1 (2017), 0003
    [3]
    Hisatomi, T.; Kubota, J.; Domen, K. Chem. Soc. Rev., 43 (2014), 7520-7535
    [4]
    Su, T.; Shao, Q.; Qin, Z.; Guo, Z.; Wu, Z. ACS Catal, 8 (2018), 2253-2276
    [5]
    Fujishima, A.; Honda, K. Nature, 238 (1972), 37-38
    [6]
    Maeda, K. Journal of Photochemistry and Photobiology C:Photochemistry Reviews, 12 (2011), 237-268
    [7]
    Wang, Q.; Domen, K. Chem. Rev., 120 (2020), 919-985
    [8]
    Saraswat, S. K.; Rodene, D. D.; Gupta, R. B. Renewable and Sustainable Energy Reviews, 89 (2018), 228-248
    [9]
    Dong, X.; Cheng, F. J. Mater. Chem. A, 3 (2015), 23642-23652
    [10]
    Han, Q.; Wang, B.; Gao, J.; Cheng, Z.; Zhao, Y.; Zhang, Z.; Qu, L. ACS Nano, 10 (2016), 2745-2751
    [11]
    Yang, S.; Gong, Y.; Zhang, J.; Zhan, L.; Ma, L.; Fang, Z.; Vajtai, R.; Wang, X.; Ajayan, P. M. Adv. Mater., 25 (2013), 2452-2456
    [12]
    Liu, C.; Wang, L.; Tang, Y.; Luo, S.; Liu, Y.; Zhang, S.; Zeng, Y.; Xu, Y. Applied Catalysis B:Environmental, 164 (2015), 1-9
    [13]
    Peng, R.; Liang, L.; Hood, Z. D.; Boulesbaa, A.; Puretzky, A.; Ievlev, A. V.; Come, J.; Ovchinnikova, O. S.; Wang, H.; Ma, C.; Chi, M.; Sumpter, B. G.; Wu, Z. ACS Catal, 6 (2016), 6723-6729
    [14]
    Gao, G.; O'Mullane, A. P.; Du, A. ACS Catal, 7 (2017), 494-500
    [15]
    Guo, Z.; Zhou, J.; Zhu, L.; Sun, Z. J. Mater. Chem. A, 4 (2016), 11446-11452
    [16]
    Liu, Q.; Wang, E.; Sun, G. Chinese Journal of Catalysis, 41 (2020), 574-591
    [17]
    Hu, P.; Wen, Z.; Wang, L.; Tan, P.; Xiao, K. ACS Nano, 6 (2012), 5988-5994
    [18]
    Yagmurcukardes, M.; Senger, R. T.; Peeters, F. M.; Sahin, H. Phys. Rev. B, 94 (2016), 245407
    [19]
    Late, D. J.; Liu, B.; Luo, J.; Yan, A.; Matte, H. S. S. R.; Grayson, M.; Rao, C. N. R.; Dravid, V. P. Adv. Mater., 24 (2012), 3549-3554
    [20]
    Harvey, A.; Backes, C.; Gholamvand, Z.; Hanlon, D.; McAteer, D.; Nerl, H. C.; McGuire, E.; Seral-Ascaso, A.; Ramasse, Q. M.; McEvoy, N.; Winters, S.; Berner, N. C.; McCloskey, D.; Donegan, J. F.; Duesberg, G. S.; Nicolosi, V.; Coleman, J. N. Chem. Mater., 27 (2015), 3483-3493
    [21]
    Hu, P.; Wang, L.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X.; Wen, Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan, D. B.; Xiao, K. Nano Lett., 13 (2013), 1649-1654
    [22]
    Mudd, G. W.; Svatek, S. A.; Ren, T.; Patane, A.; Makarovsky, O.; Eaves, L.; Beton, P. H.; Kovalyuk, Z. D.; Lashkarev, G. V.; Kudrynskyi, Z. R.; Dmitriev, A. I. Adv. Mater., 25 (2013), 5714-5718
    [23]
    Wang, Z.; Xu, K.; Li, Y.; Zhan, X.; Safdar, M.; Wang, Q.; Wang, F.; He, J. ACS Nano, 8 (2014), 4859-4865
    [24]
    Kouser, S.; Thannikoth, A.; Gupta, U.; Waghmare, U. V.; Rao, C. N. R. Small, 11 (2015), 4723-4730
    [25]
    Zhuang, H. L.; Hennig, R. G. Chem. Mater., 25 (2013), 3232-3238
    [26]
    Yang, H.; Zhao, P.; Ma, Y.; Lv, X.; Huang, B.; Dai, Y. J. Phys. D:Appl. Phys., 52 (2019), 455303
    [27]
    Wang, C.; Liu, Y.; Yuan, J.; Wu, P.; Zhou, W. Journal of Energy Chemistry, 41 (2020), 107-114
    [28]
    Fan, Y.; Ma, X.; Wang, J.; Song, X.; Wang, A.; Liu, H.; Zhao, M. Science Bulletin, 65 (2020), 27-34
    [29]
    Rawat, A.; Ahammed, R.; Dimple; Jena, N.; Mohanta, M. K.; De Sarkar, A. J. Phys. Chem. C, 123 (2019), 12666-12675
    [30]
    Wen, C.; Zhang, Z.; Guo, Z.; Shen, J.; Sa, B.; Lin, P.; Zhou, J.; Sun, Z. J. Phys.:Condens. Matter, 32 (2019), 065501
    [31]
    Zhang, J.; Jia, S.; Kholmanov, I.; Dong, L.; Er, D.; Chen, W.; Guo, H.; Jin, Z.; Shenoy, V. B.; Shi, L.; Lou, J. ACS Nano, 11 (2017), 8192-8198
    [32]
    Cui, Y.; Peng, L.; Sun, L.; Li, M.; Zhang, X.; Huang, Y. J. Phys.:Condens. Matter, 32 (2019), 08LT01
    [33]
    Guo, Y.; Zhou, S.; Bai, Y.; Zhao, J. Appl. Phys. Lett., 110 (2017), 163102
    [34]
    da Silva, R.; Barbosa, R.; Mancano, R. R.; Duraes, N.; Pontes, R. B.; Miwa, R. H.; Fazzio, A.; Padilha, J. E. ACS Applied Nano Materials, 2 (2019), 890-897
    [35]
    Li, X.; Li, Z.; Yang, J. Phys. Rev. Lett., 112 (2014), 018301
    [36]
    Chen, W.; Hou, X.; Shi, X.; Pan, H. ACS Appl. Mater. Interfaces, 10 (2018), 35289-35295
    [37]
    Ma, X.; Wu, X.; Wang, H.; Wang, Y. J. Mater. Chem. A, 6 (2018), 2295-2301
    [38]
    Ju, L.; Bie, M.; Tang, X.; Shang, J.; Kou, L. ACS Appl. Mater. Interfaces, 12 (2020), 29335-29343
    [39]
    Kresse, G.; Furthmuller, J. Phys. Rev. B, 54 (1996), 11169-11186
    [40]
    Blochl, P. E. Phys. Rev. B, 50 (1994), 17953-17979
    [41]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett., 77 (1996), 3865-3868
    [42]
    Heyd, J.; Peralta, J. E.; Scuseria, G. E.; Martin, R. L. J. Chem. Phys., 123 (2005), 174101
    [43]
    Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys., 118 (2003), 8207-8215
    [44]
    Bengtsson, L. Phys. Rev. B, 59 (1999), 12301-12304
    [45]
    Maintz, S.; Deringer, V. L.; Tchougreeff, A. L.; Dronskowski, R. J. Comput. Chem., 37 (2016), 1030-1035
    [46]
    Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys., 132 (2010), 154104
    [47]
    Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem., 32 (2011), 1456-1465
    [48]
    Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Noerskov, J. K. Nat. Mater., 5 (2006), 909-913
    [49]
    Greeley, J.; Noerskov, J. K.; Kibler, L. A.; El-Aziz, A. M.; Kolb, D. M. ChemPhysChem, 7 (2006), 1032-1035
    [50]
    Sabatier, P. Berichte der deutschen chemischen Gesellschaft, 44 (1911), 1984-2001
    [51]
    Demirtas, M.; Ozdemir, B.; Mogulkoc, Y.; Durgun, E. Phys. Rev. B, 101 (2020), 075423
    [52]
    Ju, L.; Shang, J.; Tang, X.; Kou, L. J. Am. Chem. Soc., 142 (2020), 1492-1500
    [53]
    Tang, X.; Shang, J.; Gu, Y.; Du, A.; Kou, L. J. Mater. Chem. A, 8 (2020), 7331-7338
    [54]
    Jin, C.; Tang, X.; Tan, X.; Smith, S. C.; Dai, Y.; Kou, L. J. Mater. Chem. A, 7 (2019), 1099-1106
    [55]
    Ling, T.; Yan, D.-Y.; Wang, H.; Jiao, Y.; Hu, Z.; Zheng, Y.; Zheng, L.; Mao, J.; Liu, H.; Du, X.-W.; Jaroniec, M.; Qiao, S.-Z. Nat. Commun., 8 (2017), 1509
    [56]
    Wang, X.; Zhu, Y.; Vasileff, A.; Jiao, Y.; Chen, S.; Song, L.; Zheng, B.; Zheng, Y.; Qiao, S.-Z. ACS Energy Letters, 3 (2018), 1198-1204
    [57]
    You, B.; Tang, M. T.; Tsai, C.; Abild-Pedersen, F.; Zheng, X.; Li, H. Adv. Mater., 31 (2019), 1807001
    [58]
    Zhu, H.; Gao, G.; Du, M.; Zhou, J.; Wang, K.; Wu, W.; Chen, X.; Li, Y.; Ma, P.; Dong, W.; Duan, F.; Chen, M.; Wu, G.; Wu, J.; Yang, H.; Guo, S. Adv. Mater., 30 (2018), 1707301
    [59]
    Pei, W.; Zhou, S.; Bai, Y.; Zhao, J. Carbon, 133 (2018), 260-266
    [60]
    Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. J. Chem. Phys., 140 (2014), 084106
    [61]
    Huang, A.; Shi, W.; Wang, Z. J. Phys. Chem. C, 123 (2019), 11388-11396
    [62]
    Kudo, A.; Miseki, Y. Chem. Soc. Rev., 38 (2009), 253-278
    [63]
    Singh, A. K.; Mathew, K.; Zhuang, H. L.; Hennig, R. G. J Phys. Chem. Lett., 6 (2015), 1087-1098
    [64]
    Qiao, M.; Liu, J.; Wang, Y.; Li, Y.; Chen, Z. J. Am. Chem. Soc., 140 (2018), 12256-12262
    [65]
    Rohlfing, M.; Louie, S. G. Phys. Rev. Lett., 81 (1998), 2312-2315
    [66]
    Albrecht, S.; Reining, L.; Del Sole, R.; Onida, G. Phys. Rev. Lett., 80 (1998), 4510-4513
    [67]
    Shishkin, M.; Kresse, G. Phys. Rev. B, 74 (2006), 035101
    [68]
    Fuchs, F.; Furthmuller, J.; Bechstedt, F.; Shishkin, M.; Kresse, G. Phys. Rev. B, 76 (2007), 115109
    [69]
    Wei, W.; Jacob, T. Phys. Rev. B, 87 (2013), 085202
    [70]
    Zhou, W.; Umezawa, N.; Ma, R.; Sakai, N.; Ebina, Y.; Sano, K.; Liu, M.; Ishida, Y.; Aida, T.; Sasaki, T. Chem. Mater., 30 (2018), 6449-6457
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (157) PDF downloads(11) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return