Volume 7 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Jiexin Zhang, YangYang Lai, Peng Li, Yanxia Wang, Faping Zhong, Xiangming Feng, Weihua Chen, Jianjun Liu, Xinping Ai, Hanxi Yang, Yuliang Cao. Boosting rate and cycling performance of K-doped Na3V2(PO4)2F3 cathode for high-energy-density sodium-ion batteries. Green Energy&Environment, 2022, 7(6): 1253-1262. doi: 10.1016/j.gee.2021.01.001
Citation: Jiexin Zhang, YangYang Lai, Peng Li, Yanxia Wang, Faping Zhong, Xiangming Feng, Weihua Chen, Jianjun Liu, Xinping Ai, Hanxi Yang, Yuliang Cao. Boosting rate and cycling performance of K-doped Na3V2(PO4)2F3 cathode for high-energy-density sodium-ion batteries. Green Energy&Environment, 2022, 7(6): 1253-1262. doi: 10.1016/j.gee.2021.01.001

Boosting rate and cycling performance of K-doped Na3V2(PO4)2F3 cathode for high-energy-density sodium-ion batteries

doi: 10.1016/j.gee.2021.01.001
  • As a promising cathode material, Na3V2(PO4)2F3 (NVPF) has attracted wide attention for sodium-ion batteries (SIBs) because of its high operating voltage and high structural stability. However, the low intrinsic electronic conductivity and insufficient Na ion mobility of NVPF limit its development. Herein, K-doping NVPF is prepared through a facile ball-milling combined calcination method. The effects of K-doping on the crystal structure, kinetic properties and electrochemical performance are investigated. The results demonstrate that the Na2.90K0.10V2(PO4)3F3 (K0.10-NVPF) exhibits a high capacity (120.8 mAh g-1 at 0.1 C), high rate capability (66 mAh g-1 at 30 C) and excellent cycling performance (a capacity retention of 97.5% at 1 C over 500 cycles). Also, the occupation site of K ions in the lattice, electronic band structure and Na-ion transport kinetic property in K-doped NVPF are investigated by density functional theory (DFT) calculations, which reveals that the K-doped NVPF exhibits improved electronic and ionic conductivities, and located K+ ions in the lattice to contribute to high reversible capacity, rate capability and cycling stability. Therefore, the K-doped NVPF serves as a promising cathode material for high-energy and high-power SIBs.

     

  • Jieixn Zhang and Yangyang Lai are the co-authors of this article.
  • loading
  • [1]
    O. Meincke, D. Kaempfer, H. Weickmann, C. Friedrich, M. Vathauer, H. Warth, Polymer 45 (2004) 739–748.
    [2]
    V. Arrighi, I.J. McEwen, H. Qian, M.B.S. Prieto, Polymer 44 (2003) 6259–6266.
    [3]
    E. LeGrognec, R. Claverie, R. Poli, J. Am. Chem. Soc. 123 (2001) 9513–9524.
    [4]
    M.H. Jin, X.J. Feng, L. Feng, T.L. Sun, J. Zhai, T.J. Li, L. Jiang, Adv. Mater. 17 (2005) 1977–1981.
    [5]
    N.S. Abo-Ghander, F. Logist, J.R. Grace, J.F.M. VanImpe, S. Elnashaie, C.J. Lim, Chem. Eng. Sci. 65 (2010) 3113–3127.
    [6]
    S. Smeds, D. Murzin, T. Salmi, Appl. Catal. A 125 (1995) 271–291.
    [7]
    S. Smeds, T. Salmi, D.Y. Murzin, Appl. Catal. A 201 (2000) 55–59.
    [8]
    J.B. Zheng, Z.F. Wu, Z.Y. Yan, J.J. Li, W.K. Lai, X.D. Yi, B.H. Chen, W. Fang, H.L. Wan, Fuel 104 (2013) 547–552.
    [9]
    I. Rossetti, E. Bencini, L. Trentini, L. Forni, Appl. Catal. A 292 (2005) 118–123.
    [10]
    B.A. Vaughan, M.S. Webster-Gardiner, T.R. Cundari, T.B. Gunnoe, Science 348 (2015) 421–424.
    [11]
    L.N. Sidorenko, P.N. Galich, V.S. Gutirya, Dokl. Akad. Nauk SSSR 173 (1967) 132–133.
    [12]
    K. Yoo, E.C. Burckle, P.G. Smirniotis, J. Catal. 211 (2002) 6–18.
    [13]
    W.O. Alabi, B.B. Tope, R.B. Jermy, A.M. Aitani, H. Hattori, S.S. AlKhattaf, Catal. Today 226 (2014) 117–123.
    [14]
    H. Hattori, Appl. Catal. A 504 (2015) 103–109.
    [15]
    Z. Hong, C.F. Xiong, G.Q. Zhao, Z.R. Zhu, Catal. Sci. Technol. 9 (2019) 6828–6840.
    [16]
    A.E. Palomares, G. EderMirth, J.A. Lercher, J. Catal. 168 (1997) 442–449.
    [17]
    H. Itoh, A. Miyamoto, Y. Murakami, J. Catal. 64 (1980) 284–294.
    [18]
    B.B. Tope, W.O. Alabi, A.M. Aitani, H. Hattori, S.S. Al-Khattaf, Appl. Catal., A 443 (2012) 214–220.
    [19]
    P.D. Li, Q. Han, X.M. Zhang, Y.Y. Yuan, Y.F. Zhang, H.C. Guo, L. Xu, L. Xu, Catal. Sci. Technol. 8 (2018) 3346–3356.
    [20]
    W.W. Kaeding, C. Chu, L.B. Young, S.A. Butter, J. Catal. 69 (1981) 392–398.
    [21]
    W.W. Kaeding, C. Chu, L.B. Young, B. Weinstein, J. Catal. 67 (1981) 159–174.
    [22]
    F. Yaripour, F. Baghaei, I. Schmidt, J. Perregaard, Catal. Commun. 6 (2005) 147–152.
    [23]
    H. Han, M. Liu, X.W. Nie, F.S. Ding, Y.R. Wang, J.J. Li, X.W. Guo, C.S. Song, Micropor. Mesopor. Mater. 234 (2016) 61–72.
    [24]
    M. Hunger, U. Schenk, J. Weitkamp, J. Mol. Catal. 134 (1998) 97–109.
    [25]
    H. Han, M. Liu, F.S. Ding, Y.R. Wang, X.W. Guo, C.S. Song, Ind. Eng. Chem. Res. 55 (2016) 1849–1858.
    [26]
    Z.H. Zhang, W.L. Shan, H. Li, W.C. Zhu, N. Zhang, Y. Tang, J.H. Yu, M.J. Jia, W.X. Zhang, C.L. Zhang, J. Porous Mater. 22 (2015) 1179–1186.
    [27]
    J. Jiang, G.Z. Lu, C.X. Miao, X. Wu, W.H. Wu, Q. Sun, Micropor. Mesopor. Mater. 167 (2013) 213–220.
    [28]
    N.K. Das, K. Pramanik, J. Indian Chem. Soc. 74 (1997) 701–704.
    [29]
    H. Hattori, A.A. Amusa, R.B. Jermy, A.M. Aitani, S.S. Al-Khattaf, J. Mol. Catal. 424 (2016) 98–105.
    [30]
    L.L. Song, Y. Yu, Z.R. Li, S.Q. Guo, L.F. Zhao, W. Li, J. Braz. Chem. Soc. 25 (2014) 1346–1354.
    [31]
    Z.H. Zhang, X.L. Yuan, S.S. Miao, H. Li, W.L. Shan, M.J. Jia, C.L. Zhang, Catalysts 9 (2019) 829.
    [32]
    Q. Han, P.D. Li, Y.F. Zhang, P. Lu, L. Xu, H.C. Guo, L. Xu, ChemCatChem 11 (2019) 1610–1614.
    [33]
    S. Saha, R. Mistri, B.C. Ray, J. Chromatogr. A 1217 (2010) 307–311.
    [34]
    L. Moravkova, Z. Wagner, J. Linek, J. Chem. Thermodyn. 42 (2010) 65–69.
    [35]
    S. Hashemian, M. Mirshamsi, J. Ind. Eng. Chem. 18 (2012) 2010–2015.
    [36]
    A.H. Orrego, M. Romero-Fernandez, M. del Carmen Millan-Linares, M. del M. Yust, J.M. Guisan, J. Rocha-Martin, Catalysts 8 (2018) 333.
    [37]
    K. Tateishi, K. Noguchi, A. Saito, Org. Biomol. Chem. 16 (2018) 5965–5968.
    [38]
    A. Borgna, S. Magni, J. Sepulveda, C.L. Padro, C.R. Apesteguia, Catal. Lett. 102 (2005) 15–21.
    [39]
    G. Sethia, R.S. Somani, H.C. Bajaj, Ind. Eng. Chem. Res. 53 (2014) 6807–6814.
    [40]
    Z. Hong, Z. Wang, D. Chen, Q. Sun, X. Li, Appl. Surf. Sci. 440 (2018) 1037–1046.
    [41]
    Y. Okamoto, M. Ogawa, A. Maezawa, T. Imanaka, J. Catal. 112 (1988) 427–436.
    [42]
    Y. Okamoto, A. Maezawa, H. Kane, T. Imanaka, J. Catal. 112 (1988) 585–589.
    [43]
    E.A. Podgornov, I.P. Prosvirin, V.I. Bukhtiyarov, J. Mol. Catal. 158 (2000) 337–343.
    [44]
    R.M. Serra, E.E. Mino, M.K. Sapag, A.V. Boix, Micropor. Mesopor. Mater. 138 (2011) 102–109.
    [45]
    Y. Okamoto, T. Kubota, Micropor. Mesopor. Mater. 48 (2001) 301–307.
    [46]
    M.D. Zhou, Z. Wang, Q. Sun, J.Y. Wang, C.H. Zhang, D. Chen, X.B. Li, ACS Appl. Mater. Inter. 11 (2019) 46875–46885.
    [47]
    H. Hattori, W.O. Alabi, B.R. Jermy, A.M. Aitani, S.S. Al-Khattaf, Catal. Lett. 143 (2013) 1025–1029.
    [48]
    M.L. Unland, J. Phys. Chem. 82 (1978) 580–583.
    [49]
    S.T. King, J.M. Garces, J. Catal. 104 (1987) 59–70.
    [50]
    H. Wang, B. Wang, Y. Wen, W. Huang, Catal. Lett. 147 (2017) 161–166.
    [51]
    R.J. Madon, M. Boudart, Ind. Eng. Chem. Fundam. 21 (1982) 438–447.
    [52]
    J.W. Harris, J. Arvay, G. Mitchell, W.N. Delgass, F.H. Ribeiro, J. Catal. 365 (2018) 105–114.
    [53]
    M.L. Sarazen, E. Doskocil, E. Iglesia, J. Catal. 344 (2016) 553–569.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (263) PDF downloads(58) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return