Volume 6 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
Shengli Liu, Zhenhang Wang, Ruisong Zhu, Zhigang Lei, Jiqin Zhu. [EMIM][DCA] as an entrainer for the extractive distillation of methanol-ethanol-water system. Green Energy&Environment, 2021, 6(3): 363-370. doi: 10.1016/j.gee.2020.12.022
Citation: Shengli Liu, Zhenhang Wang, Ruisong Zhu, Zhigang Lei, Jiqin Zhu. [EMIM][DCA] as an entrainer for the extractive distillation of methanol-ethanol-water system. Green Energy&Environment, 2021, 6(3): 363-370. doi: 10.1016/j.gee.2020.12.022

[EMIM][DCA] as an entrainer for the extractive distillation of methanol-ethanol-water system

doi: 10.1016/j.gee.2020.12.022
  • The ionic liquid (IL) 1-ethyl-3-methylimidazolium dicyanamide ([EMIM][DCA]) was selected as an appropriate entrainer for the extractive distillation of the methanol–ethanol-water mixture. The COSMO-RS model was applied to screen out the appropriate solvents considering selectivity and solvent capacity together. Isobaric vapor–liquid equilibrium (VLE) experiments for the two systems of methanol–water and ethanol–water with different amounts of [EMIM][DCA] added were conducted at 101.3 kPa. The experimental data showed that [EMIM][DCA] exhibits an obvious salting effect for the methanol (or ethanol)-water mixture and eliminates the azeotropic point of ethanol–water. Moreover, the predicted values by UNIFAC-Lei model coincide well with experimental data. The separation mechanism was further explained in combination with surface charge density distribution (σ-profiles), excess enthalpy (H), and binding energy. In addition, the flow charts were designed to evaluate the improvement of energy consumption with [EMIM][DCA] as the entrainer when compared to ethylene glycol (EG). The simulation results demonstrated that [EMIM][DCA] is more energy efficient than EG.

     

    The COSMO-RS model was applied to screen out the appropriate entrainer and explain the separation mechanism. With the phase behaviors and energy consumption of separation process predicted according to UNIFAC model, this work ranges from molecular level to systematic scale.

  • loading
  • [1]
    L. Su, X. Li, Z. Sun, Renew. Sust. Energ. Rev. 28 (2013) 541-550.
    [2]
    S. Kumar, N. Singh, R. Prasad, Renew. Sust. Energ. Rev. 14 (2010) 1830-1844.
    [3]
    Y. Liu, K. Murata, M. Inaba, I. Takahara, Fuel Process. Technol. 110 (2013) 206-213.
    [4]
    E.A. Tsui, M. Cheryan, J. Membrane Sci. 237 (2004) 61-69.
    [5]
    J.P. Knapp, M.F. Doherty, AIChE J. 36 (1990) 969-984.
    [6]
    Z. Lei, C. Li, B. Chen, Sep. Purif. Rev. 32 (2003) 121-213. doi: 10.1081/SPM-120026627
    [7]
    L.M. Vane, Sep. Purif. Technol. 27 (2002) 83-84.
    [8]
    Z. Lei, X. Xi, C. Dai, J. Zhu, B. Chen, AIChE J. 60 (2014) 2994-3004. doi: 10.1002/aic.14478
    [9]
    Y.-C. Chen, S.-K. Hung, H.-Y. Lee, I.L. Chien, Ind. Eng. Chem. Res. 54 (2015) 3828-3843. doi: 10.1021/ie503922f
    [10]
    Dong Y, Dai C, Lei Z, Fluid Phase Equilibria. 462 (2018) 172-180.
    [11]
    C. Dai, Z. Lei, X. Xi, J. Zhu, B. Chen, Ind. Eng. Chem. Res. 53 (2014) 15786-15791. doi: 10.1021/ie502487n
    [12]
    Z. Lei, B. Chen, C. Li, H. Liu, Chem. Rev. 108 (2008) 1419-1455. doi: 10.1021/cr068441+
    [13]
    Z. Song, X. Li, H. Chao, F. Mo, T. Zhou, H. Cheng, L. Chen, Z. Qi, Green Energy Environ. 4 (2019) 154-165.
    [14]
    J.Wang, J.Luo, S.Feng, H.Li, Y. Wan, X. Zhang, Green Energy Environ. 1 (2016) 43-61.
    [15]
    Y. Ge, L. Zhang, X. Yuan, W. Geng, J. Ji, J. Chem. Thermodyn. 40 (2008) 1248-1252.
    [16]
    C. Tsanas, A. Tzani, A. Papadopoulos, A. Detsi, E. Voutsas, Fluid Phase Equilibr. 379 (2014) 148-156.
    [17]
    Q. Li, F. Xing, Z. Lei, B. Wang, Q. Chang, J. Chem. Eng. Data 53 (2008) 275-279. doi: 10.1021/je7003808
    [18]
    Q. Li, J. Zhang, Z. Lei, J. Zhu, J. Zhu, X. Huang, Ind. Eng. Chem. Res. 48 (2009) 9006-9012. doi: 10.1021/ie8017127
    [19]
    J. Wisniak, Ind. Eng. Chem. Res. 33 (1994) 177-180. doi: 10.1021/ie00025a025
    [20]
    C. McDermott, S.R.M. Ellis, Chem. Eng. Sci. 20(1965) 293-296.
    [21]
    A.V. Orchilles, P.J. Miguel, F.J. Llopis, E. Vercher, A. M. Andreu, J. Chem. Eng. Data 56 (2011) 4875-4880. doi: 10.1021/je200816z
    [22]
    M. Diedenhofen, A. Klamt, K. Marsh, A. Schafer, Phys. Chem. Chem. Phys. 9 (2007) 4653-4656. doi: 10.1039/b706728c
    [23]
    T. Banerjee, M.K. Singh, A. Khanna, Ind. Eng. Chem. Res. 45 (2006) 3207-3219. doi: 10.1021/ie051116c
    [24]
    J. Han, C. Dai, G.Yu, Z.Lei, Green Energy Environ. 3 (2018) 247-265.
    [25]
    Z. Lei, C. Dai, X. Liu, L. Xiao, B. Chen, Ind. Eng. Chem. Res. 51 (2012) 12135-12144. doi: 10.1021/ie301159v
    [26]
    Z. Lei, C. Dai, Q. Yang, J. Zhu, B. Chen, AIChE J. 60 (2014) 4222-4231. doi: 10.1002/aic.14606
    [27]
    M. Mu, J. Cheng, C. Dai, N. Liu, Z. Lei, Y. Ding, J. Lu, Green Energy Environ. 4(2019) 190-197.
    [28]
    P. Navarro, M. Larriba, J. Garcia, E.J. Gonzalez, F. Rodriguez, Fluid Phase Equilib. 387 (2015) 209-216.
    [29]
    A.V. Orchilles, P.J. Miguel, V. Gonzalez-Alfaro, F.J. Llopis, E. Vercher, A.M. Andreu, J. Chem. Thermodyn. 110 (2017) 16-24.
    [30]
    Z. Lei, J. Zhang, Q. Li, B. Chen, Ind. Eng. Chem. Res. 48 (2009) 2697-2704. doi: 10.1021/ie801496e
    [31]
    Y. Dong, C. Dai, Z. Lei, Ind. Eng. Chem. Res. 57 (2018) 11167-11177. doi: 10.1021/acs.iecr.8b01617
    [32]
    Z. Lyu, T. Zhou, L. Chen, Y. Ye, K. Sundmacher, Z. Qi, Chem. Eng. Sci. 113(2014) 45-53.
    [33]
    M. Walker, A.J.A. Harvey, A. Sen, C.E.H. Dessent, J. Phys. Chem. A 117 (2013) 12590-12600. doi: 10.1021/jp408166m
    [34]
    J. Witte, M. Goldey, J.B. Neaton, M. Head-Gordon, J. Chem. Theory Comput. 11 (2015) 1481-1492. doi: 10.1021/ct501050s
    [35]
    D.R. Macfarlane, J. Golding, S.A. Forsyth, M. Forsyth, G.B. Deacon, Chem. Commun. 16 (2001) 1430-1431. doi: 10.1039/b103064g
    [36]
    D.R. Macfarlane, S.A. Forsyth, J. Golding, G.B. Deacon, Green Chem. 4 (2002) 444-448.
    [37]
    Y. Yoshida, K. Muroi, A. Otsuka, G. Saito, M. Takahashi, T. Yoko, Inorg. Chem. 43 (2004) 1458-1462.
    [38]
    J. O. Valderrama, R. E. Rojas, Ind. Eng. Chem. Res. 48(2009) 6890-6900. doi: 10.1021/ie900250g
    [39]
    C. Dai, Y. Dong, J. Han, Z. Lei, Fluid Phase Equilib. 388(2015) 142-150.
    [40]
    R. Sheldon, Chem. Commun. (2001). 2399-2407. doi: 10.1039/b107270f
    [41]
    A. Berthod, M.J. Ruiz-Angel, S. Carda-Broch, J. Chromatogr. A 1184 (2008) 6-18.
    [42]
    A. Klamt, F. Eckert, Fluid Phase Equilibr. 205 (2003) 357-357.
    [43]
    J. Li, X. Yang, K. Chen, Y. Zheng, C. Peng, H. Liu, Ind. Eng. Chem. Res. 51 (2012) 9376-9385. doi: 10.1021/ie3000985
    [44]
    E. Ruiz, V.R. Ferro, J. Palomar, J. Ortega, J.J. Rodriguez, J. Phys. Chem. B 117 (2013) 7388-7398. doi: 10.1021/jp402331y
    [45]
    K. A. Kurnia, J. A. P. Coutinho, Ind. Eng. Chem. Res. 52 (2013) 13862-13874. doi: 10.1021/ie4017682
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (124) PDF downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return