Citation: | Zhenhang Wang, Shengli Liu, Yifan Jiang, Zhigang Lei, Jie Zhang, Ruisong Zhu, Jiwen Ren. Methyl chloride dehydration with ionic liquid based on COSMO-RS model. Green Energy&Environment, 2021, 6(3): 413-421. doi: 10.1016/j.gee.2020.12.021 |
A suitable ionic liquid for methyl chloride drying experiment was screened out from 210 ionic liquids by COSMO-RS model. Moreover, the experimental mechanism of ionic liquids drying is further explained by the COSMO-RS model, and it is further confirmed by analyzing the binding energy. The solubility of methyl chloride in [EMIM][BF4] and TEG and [EMIM][BF4]+H2O was completed, and the experimental results well proved the reliability of the UNIFAC-Lei model. The unknown interaction parameters were obtained through the solubility data of this work and the experimental data in the literatures. The methyl chloride drying experiment was completed in the laboratory, and the water content of the methyl chloride can be reduced to below 200 ppm. The simulation of the methyl chloride drying process using [EMIM][BF 4] or TEG as absorbents was carried out by ASPEN software on an industrial scale. The final simulation results show that the [EMIM][BF4] drying process has lower energy consumption and better drying effect.
The ionic liquid [EMIM][BF4] with strong hydrophilic ability are used to dry methyl chloride gas. The two flashing operations are used to separate methyl chloride and water in the recovery process of the ionic liquid [EMIM][BF4].
[1] |
R.M. Thomas, I.E. Lightbown, W.J. Sparks, P.K. Frolich, E.V. Murphree, Ind. Eng. Chem.32 (1940) 1283. doi: 10.1021/ie50370a002
|
[2] |
R. Cao, X. Zhao, X. Zhao, X. Wu, X. Li, L. Zhang, Ind. Eng. Chem. Res.58 (2019) 16645-16653. doi: 10.1021/acs.iecr.9b03491
|
[3] |
G. Yu, X. Sui, Z. Lei, C. Dai, B. Chen, AIChE J.65 (2019) 479-481.
|
[4] |
G. Yu, C. Dai, L. Wu, Z. Lei, Energy Fuels.31 (2017) 1429-1439. doi: 10.1021/acs.energyfuels.6b02920
|
[5] |
Z. Lei, C. Dai, B. Chen, Chem. Rev.114 (2014) 1289-1326. doi: 10.1021/cr300497a
|
[6] |
D. W. Armstrong, L. He, Y. Liu, Anal.Chem.71 (1999) 3873.
|
[7] |
E.R. Cooper, C.D. Andrews, P.S. Wheatley, P.B. Webb, P. Wormald, R.E. Morris, Nature. 430 (2004) 1012-1016. doi: 10.1038/nature02860
|
[8] |
Z. Fei, T.J. Geldbach, D. Zhao, P.J. Dyson, Chem. Eur. J. 12 (2006) 2123.
|
[9] |
M. Mu, J. Cheng , C. Dai , N. Liu , Z. Lei , Y. Ding , J. Lu, Green Energ. Environ. 4 (2019) 190-197.
|
[10] |
Z. Li, R. Li, X. Yuan, Y. Pei, Y. Zhao, H. Wang, J.Wang, Green Energ. Environ. 4 (2019) 131-138. doi: 10.3847/1538-4357/ab1f68
|
[11] |
Y. Jiang, Z. Wang, Z, Lei, G, Yu, Chemical Engineering Science. 230 (2020) 116186.
|
[12] |
Z. Zhao, X. Xing, Z. Tang, Y. Zheng, W. Fei, X. Liang , E. Ataeivarjovi , D. Guo, Energy. 143 (2018) 35-42.
|
[13] |
Z. Zhao, Y. Huang, Z. Zhang , W. Fei, M. Luo, Y. Zhao, J. Chem. Thermodynamics.142 (2020) 106017.
|
[14] |
M. Krolikowski, J. Chem. Thermodynamics 131 (2019) 460-470.
|
[15] |
M. T. Zafarani-Moattar, H. Shekaari, P. Jafari, Journal of Molecular Liquids 273 (2019) 463-475.
|
[16] |
Z. Lei, X. Qi, J. Zhu, Q. Li, B. Chen, J. Chem. Eng. Data .57 (2012) 3458-3466. doi: 10.1021/je300611q
|
[17] |
A. Klamt, F. Eckert, Fluid Phase Equilibr. 172 (2000) 43-72.
|
[18] |
F. Eckert, A. Klamt, AIChE J. 48 (2002) 369-385.
|
[19] |
M. Diedenhofen, A. Klamt, Fluid Phase Equilibr. 294 (2010) 31-38.
|
[20] |
J. Han, C. Dai, G. Yu, Z. Lei, Green Energ. Environ. 3 (2018) 247-265.
|
[21] |
A, Klamt, J. Phys. Chem. 99 (1995) 2224-2235. doi: 10.1021/j100007a062
|
[22] |
R. Kato, J. Gmehling, J. Chem. Thermodynamics. 37 (2005) 603-619.
|
[23] |
X. Zhang, Z. Liu, AIChE J. 54 (2008) 2717-2728. doi: 10.1002/aic.11573
|
[24] |
T. Zhou, Z. Wang, Y. Ye, L. Chen, J. Xu, Z. Qi, Ind. Eng. Chem. Res. 51(2012) 5559-5564. doi: 10.1021/ie202728j
|
[25] |
Z. Song, T. Zhou, Z. Qi, K. Sundmacher, ACS Sustainable Chem. Eng. 5 (2017) 3382-3389. doi: 10.1021/acssuschemeng.7b00024
|
[26] |
Y. Xu, D. Meng, H. Li, X. Yu, Z. Zhu, Y. Wang, Y. Ma, J. Gao, ACS Sustainable Chem. Eng. 7 (2019) 19984-19992. doi: 10.1021/acssuschemeng.9b05629
|
[27] |
Z. Zhu, Y. Xu, H. Li, Y. Shen, D. Meng, P. Cui, Y. Ma, Y. Wang, J. Gao, Separation and Purification Technology. 247 (2020) 116937.
|
[28] |
A. Asoodeh, F. Eslami, S. M. Sadrameli, Fuel 253 (2019) 460-473.
|
[29] |
Z. Lei, J. Zhang, Q. Li, B. Chen, Ind. Eng. Chem. Res. 48 (2009) 2697-2704. doi: 10.1021/ie801496e
|
[30] |
Z. Lei, C. Dai, X. Liu, L. Xiao, B. Chen, Ind. Eng. Chem. Res. 51 (2012) 12135-12144. doi: 10.1021/ie301159v
|
[31] |
Z. Lei, C. Dai, W. Wang, B. Chen, AIChE J. 60 (2014) 716-729. doi: 10.1002/aic.14294
|
[32] |
A. Bondi, J. Phys. Chem.68 (1964) 441-451. doi: 10.1021/j100785a001
|
[33] |
S. Skjold-jorgensen, B. Kolbe, J. Gmehling, P. Rasmussen, Ind. Eng. Chem. Process Des.Dev.18 (1979) 714-722. doi: 10.1021/i260072a024
|
[34] |
C. Dai, W. Wei, Z. Lei, C. Li, B. Chen, Fluid Phase Equilibr. 391 (2015) 9-17.
|
[35] |
Y. Jiang, M. Taheri, G. Yu, J. Zhu, Z. Lei, Ind. Eng. Chem. Res. 58 (2019) 15588-15597. doi: 10.1021/acs.iecr.9b02540
|
[36] |
M.S. Gruszkiewicz, J.B. Ott, J.T. Sipowska, J. Chem. Thermodynamics. 25(1993) 385-390.
|
[37] |
H. Holldorff, H. Knapp, Fluid Phase Equilibr. 43 (1988) 29-44.
|
[38] |
H. Mansoorian, K.R. Hall, J.C. Holste, P.T. Eubank, J. Chem. Thermodynamics.13 (1981) 1001-1024.
|
[39] |
C.C. Hsu, J.J. McKetta, J. Chem. Eng. Data.9 (1964) 45-51. doi: 10.1021/je60020a014
|
[40] |
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, Gaussian Inc., Wallingford CT, 2009.
|
[41] |
S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32 (2011) 1456-1465. doi: 10.1002/jcc.21759
|
[42] |
A.D. Becke, J. Chem. Phys. 98 (1993) 5648-5652. doi: 10.1063/1.464913
|
[43] |
C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785-789. doi: 10.1103/PhysRevB.37.785
|
[44] |
G. Gonfa, M.A. Bustama, A.M. Sharif, N. Mohamad, S. Ullaha, J. Nat. Gas. Sci. Eng.27 (2015) 1141-1148.
|
[45] |
J. Han, Z. Lei, C. Dai, J. Li, J. Chem. Eng. Data.61 (2016) 1117-1124. doi: 10.1021/acs.jced.5b00760
|
[46] |
M. Luszczyk, S.K. Malanowski, J. Chem. Eng. Data.51 (2006) 1735-1739. doi: 10.1021/je060157s
|
[47] |
C.P. Fredlake, J.M. Crosthwaite, D.G. Hert, S.N.V.K. Aki, J.F. Brennecke, J. Chem. Eng. Data.49 ( 2004) 954-964.
|
[48] |
H. Tokuda, K. Hayamizu, K. Ishii, M.A.B.H. Susan, M. Watanabe, J. Phys. Chem. B. 109 (2005) 6103-6110. doi: 10.1021/jp044626d
|
[49] |
H.L. Ngo, K. LeCompte, L. Hargens, A.B. McEwen, Thermochim. Acta. 357-358 (2000) 97-102.
|
[50] |
X. He, Q. Shao, W. Kong, L. Yu, X. Zhang, Y. Deng, Fluid Phase Equilibr. 366 (2014) 9-15.
|
[51] |
A. Klamt, J. Reinisch, F. Eckert, A. Hellweg, M. Diedenhofen, Phys. Chem. Chem. Phys. 14 (2012) 955-963.
|
[52] |
E. Ruiz, V.R Ferro, J. Palomar, J. Ortega, J.J. Rodriguez, J. Phys. Chem. B. 117(2013) 7388-7398. doi: 10.1021/jp402331y
|
[53] |
C. Schreiner, S. Zugmann, R. Hartl, H. J. Gores, J. Chem. Eng. Data. 55 (2010) 1784-1788. doi: 10.1021/je900878j
|
[1] | Lili Jiang, Ke Mei, Kaihong Chen, Rina Dao, Haoran Li, Congmin Wang. Design and prediction for highly efficient SO2 capture from flue gas by imidazolium ionic liquids. Green Energy&Environment, 2022, 7(1): 130-136. doi: 10.1016/j.gee.2020.08.008 |
[2] | Ruisong Zhu, Zhigang Lei. COSMO-based models for predicting the gas solubility in polymers. Green Energy&Environment, 2021, 6(3): 311-313. doi: 10.1016/j.gee.2021.03.009 |
[3] | Zhen Song, Jingwen Wang, Kai Sundmacher. Evaluation of COSMO-RS for solid–liquid equilibria prediction of binary eutectic solvent systems. Green Energy&Environment, 2021, 6(3): 371-379. doi: 10.1016/j.gee.2020.11.020 |
[4] | Huaiwei Shi, Xiang Zhang, Kai Sundmacher, Teng Zhou. Model-based optimal design of phase change ionic liquids for efficient thermal energy storage. Green Energy&Environment, 2021, 6(3): 392-404. doi: 10.1016/j.gee.2020.12.017 |
[5] | Zhengrun Chen, Hongru Zhang, Huiyuan Li, Ying Xu, Yuanyuan Shen, Zhaoyou Zhu, Jun Gao, Yixin Ma, Yinglong Wang. Separation of n-heptane and tert-butanol by ionic liquids based on COSMO-SAC model. Green Energy&Environment, 2021, 6(3): 380-391. doi: 10.1016/j.gee.2021.02.008 |
[6] | Chenglong Zhang, Jin Wu, Ruixue Wang, En Ma, Liang Wu, Jianfeng Bai, Jingwei Wang. Study of the toluene absorption capacity and mechanism of ionic liquids using COSMO-RS prediction and experimental verification. Green Energy&Environment, 2021, 6(3): 339-349. doi: 10.1016/j.gee.2020.08.001 |
[7] | Gangqiang Yu, Chengna Dai, Bin Wu, Ning Liu, Biaohua Chen, Ruinian Xu. Chlorine drying with hygroscopic ionic liquids. Green Energy&Environment, 2021, 6(3): 350-362. doi: 10.1016/j.gee.2020.10.022 |
[8] | Chenhao Jiang, Hongye Cheng, Zexian Qin, Ruizhuan Wang, Lifang Chen, Chen Yang, Zhiwen Qi, Xiucai Liu. COSMO-RS prediction and experimental verification of 1,5-pentanediamine extraction from aqueous solution by ionic liquids. Green Energy&Environment, 2021, 6(3): 422-431. doi: 10.1016/j.gee.2020.12.011 |
[9] | Kai Wang, Huijin Xu, Chen Yang, Ting Qiu. Machine learning-based ionic liquids design and process simulation for CO2 separation from flue gas. Green Energy&Environment, 2021, 6(3): 432-443. doi: 10.1016/j.gee.2020.12.019 |
[10] | Shengli Liu, Zhenhang Wang, Ruisong Zhu, Zhigang Lei, Jiqin Zhu. [EMIM][DCA] as an entrainer for the extractive distillation of methanol-ethanol-water system. Green Energy&Environment, 2021, 6(3): 363-370. doi: 10.1016/j.gee.2020.12.022 |
[11] | Wenzhong Sun, Meichen Wang, Yaqin Zhang, Weilu Ding, Feng Huo, Li Wei, Hongyan He. Protic vs aprotic ionic liquid for CO2 fixation: A simulation study. Green Energy&Environment, 2020, 5(2): 183-194. doi: 10.1016/j.gee.2020.04.004 |
[12] | Jianguo Qian, Ruiyi Yan, Xiaomin Liu, Chunshan Li, Xiangping Zhang. Modification to solution-diffusion model for performance prediction of nanofiltration of long-alkyl-chain ionic liquids aqueous solutions based on ion cluster. Green Energy&Environment, 2020, 5(1): 105-113. doi: 10.1016/j.gee.2018.10.001 |
[13] | Wan Chen, Xiaonan Guo, Enbao Zou, Mengling Luo, Mengzijing Chen, Mingke Yang, Hai Li, Chongzhi Jia, Chun Deng, Changyu Sun, Bei Liu, Lanying Yang, Guangjin Chen. A continuous and high-efficiency process to separate coal bed methane with porous ZIF-8 slurry: Experimental study and mathematical modelling. Green Energy&Environment, 2020, 5(3): 347-363. doi: 10.1016/j.gee.2020.04.015 |
[14] | Zhen Song, Xinxin Li, He Chao, Fan Mo, Teng Zhou, Hongye Cheng, Lifang Chen, Zhiwen Qi. Computer-aided ionic liquid design for alkane/cycloalkane extractive distillation process. Green Energy&Environment, 2019, 4(2): 154-165. doi: 10.1016/j.gee.2018.12.001 |
[15] | Ionic Liquids in Energy and Environment. Green Energy&Environment, 2019, 4(2): 93-94. doi: 10.1016/j.gee.2019.04.003 |
[16] | Zhiyong Li, Ruipeng Li, Xiaoqing Yuan, Yuanchao Pei, Yuling Zhao, Huiyong Wang, Jianji Wang. Anionic structural effect in liquid–liquid separation of phenol from model oil by choline carboxylate ionic liquids. Green Energy&Environment, 2019, 4(2): 131-138. doi: 10.1016/j.gee.2019.01.011 |
[17] | Mingli Mu, Jun Cheng, Chengna Dai, Ning Liu, Zhigang Lei, Yanzhou Ding, Jianjiang Lu. Removal of gaseous acetic acid using ionic liquid [EMIM][BF4]. Green Energy&Environment, 2019, 4(2): 190-197. doi: 10.1016/j.gee.2019.01.004 |
[18] | Jiaguang Zhang. Catalytic transfer hydrogenolysis as an efficient route in cleavage of lignin and model compounds. Green Energy&Environment, 2018, 3(4): 328-334. doi: 10.1016/j.gee.2018.08.001 |
[19] | Jingli Han, Chengna Dai, Gangqiang Yu, Zhigang Lei. Parameterization of COSMO-RS model for ionic liquids. Green Energy&Environment, 2018, 3(3): 247-265. doi: 10.1016/j.gee.2018.01.001 |
[20] | Weiyue Feng, Yuliang Zhao. Manufactured nanoparticle: A prediction model for understanding PM2.5 toxicity to human. Green Energy&Environment, 2017, 2(1): 3-4. doi: 10.1016/j.gee.2016.11.008 |
1. | Gu, R., Chen, J., Cheng, J. et al. A large extension of the modified UNIFAC model for IL–solute systems by combining hybrid activity coefficient databases. Separation and Purification Technology, 2025, 355: 129665. doi:10.1016/j.seppur.2024.129665 | |
2. | Li, Y., Zhao, Y., Sun, X. et al. Extraction of benzene from n-hexane: Screening of mixed extractants and liquid-liquid equilibrium data measurements | [从正己烷中提取苯:混合萃取剂的筛选及液-液相平衡数据测定]. Gao Xiao Hua Xue Gong Cheng Xue Bao/Journal of Chemical Engineering of Chinese Universities, 2024, 38(3): 375-383. doi:10.3969/j.issn.1003-9015.2024.03.004 | |
3. | Palomar, J., Lemus, J., Navarro, P. et al. Process Simulation and Optimization on Ionic Liquids. Chemical Reviews, 2024, 124(4): 1649-1737. doi:10.1021/acs.chemrev.3c00512 | |
4. | Gui, C., Lei, Z. Natural gas dehydration using ionic liquids. Advances in Natural Gas: Formation, Processing, and Applications. Volume 4: Natural Gas Dehydration, 2024. doi:10.1016/B978-0-443-19221-0.00010-7 | |
5. | Awaja, N.E., Almustafa, G., Darwish, A.S. et al. Molecular-based artificial neural networks for selecting deep eutectic solvents for the removal of contaminants from aqueous media. Chemical Engineering Journal, 2023, 476: 146429. doi:10.1016/j.cej.2023.146429 | |
6. | Li, G., Chen, K., Lei, Z. et al. Condensable Gases Capture with Ionic Liquids. Chemical Reviews, 2023, 123(16): 10258-10301. doi:10.1021/acs.chemrev.3c00175 | |
7. | Lee, M., Ham, J., Chinnasamy, V. et al. Investigation on absorption performance of R134a and R1234yf refrigerants using HMIM-based ionic liquids. Journal of Environmental Chemical Engineering, 2023, 11(3): 109726. doi:10.1016/j.jece.2023.109726 | |
8. | Wang, X., Cui, Y., Song, Y. et al. Studies on the Prediction and Extraction of Methanol and Dimethyl Carbonate by Hydroxyl Ammonium Ionic Liquids. Molecules, 2023, 28(5): 2312. doi:10.3390/molecules28052312 | |
9. | Li, Y., Chen, X., Wang, L. et al. Measurement and prediction of isothermal vapor–liquid equilibrium of α-pinene + camphene/longifolene + abietic acid + palustric acid + neoabietic acid systems. Chinese Journal of Chemical Engineering, 2023, 53: 155-169. doi:10.1016/j.cjche.2021.12.030 | |
10. | Xin, Y., Hu, Y., Wang, Y. et al. Alkylation catalyzed by H2SO4: Promoting effects of ASO on the solubility of isobutane in acid phase. Fuel, 2022, 326: 125034. doi:10.1016/j.fuel.2022.125034 | |
11. | Li, Y., Chen, X., Wang, L. et al. Measurement and Prediction of Isothermal Vapor-Liquid Equilibrium and Thermodynamic Properties of a Turpentine + Rosin System Using the COSMO-RS Model. ACS Omega, 2022, 7(19): 16270-16277. doi:10.1021/acsomega.1c05167 |