Citation: | Zhenhang Wang, Shengli Liu, Yifan Jiang, Zhigang Lei, Jie Zhang, Ruisong Zhu, Jiwen Ren. Methyl chloride dehydration with ionic liquid based on COSMO-RS model. Green Energy&Environment, 2021, 6(3): 413-421. doi: 10.1016/j.gee.2020.12.021 |
A suitable ionic liquid for methyl chloride drying experiment was screened out from 210 ionic liquids by COSMO-RS model. Moreover, the experimental mechanism of ionic liquids drying is further explained by the COSMO-RS model, and it is further confirmed by analyzing the binding energy. The solubility of methyl chloride in [EMIM][BF4] and TEG and [EMIM][BF4]+H2O was completed, and the experimental results well proved the reliability of the UNIFAC-Lei model. The unknown interaction parameters were obtained through the solubility data of this work and the experimental data in the literatures. The methyl chloride drying experiment was completed in the laboratory, and the water content of the methyl chloride can be reduced to below 200 ppm. The simulation of the methyl chloride drying process using [EMIM][BF 4] or TEG as absorbents was carried out by ASPEN software on an industrial scale. The final simulation results show that the [EMIM][BF4] drying process has lower energy consumption and better drying effect.
The ionic liquid [EMIM][BF4] with strong hydrophilic ability are used to dry methyl chloride gas. The two flashing operations are used to separate methyl chloride and water in the recovery process of the ionic liquid [EMIM][BF4].
[1] |
R.M. Thomas, I.E. Lightbown, W.J. Sparks, P.K. Frolich, E.V. Murphree, Ind. Eng. Chem.32 (1940) 1283. doi: 10.1021/ie50370a002
|
[2] |
R. Cao, X. Zhao, X. Zhao, X. Wu, X. Li, L. Zhang, Ind. Eng. Chem. Res.58 (2019) 16645-16653. doi: 10.1021/acs.iecr.9b03491
|
[3] |
G. Yu, X. Sui, Z. Lei, C. Dai, B. Chen, AIChE J.65 (2019) 479-481.
|
[4] |
G. Yu, C. Dai, L. Wu, Z. Lei, Energy Fuels.31 (2017) 1429-1439. doi: 10.1021/acs.energyfuels.6b02920
|
[5] |
Z. Lei, C. Dai, B. Chen, Chem. Rev.114 (2014) 1289-1326. doi: 10.1021/cr300497a
|
[6] |
D. W. Armstrong, L. He, Y. Liu, Anal.Chem.71 (1999) 3873.
|
[7] |
E.R. Cooper, C.D. Andrews, P.S. Wheatley, P.B. Webb, P. Wormald, R.E. Morris, Nature. 430 (2004) 1012-1016. doi: 10.1038/nature02860
|
[8] |
Z. Fei, T.J. Geldbach, D. Zhao, P.J. Dyson, Chem. Eur. J. 12 (2006) 2123.
|
[9] |
M. Mu, J. Cheng , C. Dai , N. Liu , Z. Lei , Y. Ding , J. Lu, Green Energ. Environ. 4 (2019) 190-197.
|
[10] |
Z. Li, R. Li, X. Yuan, Y. Pei, Y. Zhao, H. Wang, J.Wang, Green Energ. Environ. 4 (2019) 131-138. doi: 10.3847/1538-4357/ab1f68
|
[11] |
Y. Jiang, Z. Wang, Z, Lei, G, Yu, Chemical Engineering Science. 230 (2020) 116186.
|
[12] |
Z. Zhao, X. Xing, Z. Tang, Y. Zheng, W. Fei, X. Liang , E. Ataeivarjovi , D. Guo, Energy. 143 (2018) 35-42.
|
[13] |
Z. Zhao, Y. Huang, Z. Zhang , W. Fei, M. Luo, Y. Zhao, J. Chem. Thermodynamics.142 (2020) 106017.
|
[14] |
M. Krolikowski, J. Chem. Thermodynamics 131 (2019) 460-470.
|
[15] |
M. T. Zafarani-Moattar, H. Shekaari, P. Jafari, Journal of Molecular Liquids 273 (2019) 463-475.
|
[16] |
Z. Lei, X. Qi, J. Zhu, Q. Li, B. Chen, J. Chem. Eng. Data .57 (2012) 3458-3466. doi: 10.1021/je300611q
|
[17] |
A. Klamt, F. Eckert, Fluid Phase Equilibr. 172 (2000) 43-72.
|
[18] |
F. Eckert, A. Klamt, AIChE J. 48 (2002) 369-385.
|
[19] |
M. Diedenhofen, A. Klamt, Fluid Phase Equilibr. 294 (2010) 31-38.
|
[20] |
J. Han, C. Dai, G. Yu, Z. Lei, Green Energ. Environ. 3 (2018) 247-265.
|
[21] |
A, Klamt, J. Phys. Chem. 99 (1995) 2224-2235. doi: 10.1021/j100007a062
|
[22] |
R. Kato, J. Gmehling, J. Chem. Thermodynamics. 37 (2005) 603-619.
|
[23] |
X. Zhang, Z. Liu, AIChE J. 54 (2008) 2717-2728. doi: 10.1002/aic.11573
|
[24] |
T. Zhou, Z. Wang, Y. Ye, L. Chen, J. Xu, Z. Qi, Ind. Eng. Chem. Res. 51(2012) 5559-5564. doi: 10.1021/ie202728j
|
[25] |
Z. Song, T. Zhou, Z. Qi, K. Sundmacher, ACS Sustainable Chem. Eng. 5 (2017) 3382-3389. doi: 10.1021/acssuschemeng.7b00024
|
[26] |
Y. Xu, D. Meng, H. Li, X. Yu, Z. Zhu, Y. Wang, Y. Ma, J. Gao, ACS Sustainable Chem. Eng. 7 (2019) 19984-19992. doi: 10.1021/acssuschemeng.9b05629
|
[27] |
Z. Zhu, Y. Xu, H. Li, Y. Shen, D. Meng, P. Cui, Y. Ma, Y. Wang, J. Gao, Separation and Purification Technology. 247 (2020) 116937.
|
[28] |
A. Asoodeh, F. Eslami, S. M. Sadrameli, Fuel 253 (2019) 460-473.
|
[29] |
Z. Lei, J. Zhang, Q. Li, B. Chen, Ind. Eng. Chem. Res. 48 (2009) 2697-2704. doi: 10.1021/ie801496e
|
[30] |
Z. Lei, C. Dai, X. Liu, L. Xiao, B. Chen, Ind. Eng. Chem. Res. 51 (2012) 12135-12144. doi: 10.1021/ie301159v
|
[31] |
Z. Lei, C. Dai, W. Wang, B. Chen, AIChE J. 60 (2014) 716-729. doi: 10.1002/aic.14294
|
[32] |
A. Bondi, J. Phys. Chem.68 (1964) 441-451. doi: 10.1021/j100785a001
|
[33] |
S. Skjold-jorgensen, B. Kolbe, J. Gmehling, P. Rasmussen, Ind. Eng. Chem. Process Des.Dev.18 (1979) 714-722. doi: 10.1021/i260072a024
|
[34] |
C. Dai, W. Wei, Z. Lei, C. Li, B. Chen, Fluid Phase Equilibr. 391 (2015) 9-17.
|
[35] |
Y. Jiang, M. Taheri, G. Yu, J. Zhu, Z. Lei, Ind. Eng. Chem. Res. 58 (2019) 15588-15597. doi: 10.1021/acs.iecr.9b02540
|
[36] |
M.S. Gruszkiewicz, J.B. Ott, J.T. Sipowska, J. Chem. Thermodynamics. 25(1993) 385-390.
|
[37] |
H. Holldorff, H. Knapp, Fluid Phase Equilibr. 43 (1988) 29-44.
|
[38] |
H. Mansoorian, K.R. Hall, J.C. Holste, P.T. Eubank, J. Chem. Thermodynamics.13 (1981) 1001-1024.
|
[39] |
C.C. Hsu, J.J. McKetta, J. Chem. Eng. Data.9 (1964) 45-51. doi: 10.1021/je60020a014
|
[40] |
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, Gaussian Inc., Wallingford CT, 2009.
|
[41] |
S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32 (2011) 1456-1465. doi: 10.1002/jcc.21759
|
[42] |
A.D. Becke, J. Chem. Phys. 98 (1993) 5648-5652. doi: 10.1063/1.464913
|
[43] |
C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785-789. doi: 10.1103/PhysRevB.37.785
|
[44] |
G. Gonfa, M.A. Bustama, A.M. Sharif, N. Mohamad, S. Ullaha, J. Nat. Gas. Sci. Eng.27 (2015) 1141-1148.
|
[45] |
J. Han, Z. Lei, C. Dai, J. Li, J. Chem. Eng. Data.61 (2016) 1117-1124. doi: 10.1021/acs.jced.5b00760
|
[46] |
M. Luszczyk, S.K. Malanowski, J. Chem. Eng. Data.51 (2006) 1735-1739. doi: 10.1021/je060157s
|
[47] |
C.P. Fredlake, J.M. Crosthwaite, D.G. Hert, S.N.V.K. Aki, J.F. Brennecke, J. Chem. Eng. Data.49 ( 2004) 954-964.
|
[48] |
H. Tokuda, K. Hayamizu, K. Ishii, M.A.B.H. Susan, M. Watanabe, J. Phys. Chem. B. 109 (2005) 6103-6110. doi: 10.1021/jp044626d
|
[49] |
H.L. Ngo, K. LeCompte, L. Hargens, A.B. McEwen, Thermochim. Acta. 357-358 (2000) 97-102.
|
[50] |
X. He, Q. Shao, W. Kong, L. Yu, X. Zhang, Y. Deng, Fluid Phase Equilibr. 366 (2014) 9-15.
|
[51] |
A. Klamt, J. Reinisch, F. Eckert, A. Hellweg, M. Diedenhofen, Phys. Chem. Chem. Phys. 14 (2012) 955-963.
|
[52] |
E. Ruiz, V.R Ferro, J. Palomar, J. Ortega, J.J. Rodriguez, J. Phys. Chem. B. 117(2013) 7388-7398. doi: 10.1021/jp402331y
|
[53] |
C. Schreiner, S. Zugmann, R. Hartl, H. J. Gores, J. Chem. Eng. Data. 55 (2010) 1784-1788. doi: 10.1021/je900878j
|