Citation: | Ruizhuan Wang, Hao Qin, Jingwen Wang, Hongye Cheng, Lifang Chen, Zhiwen Qi. Reactive extraction for intensifying 2-ethylhexyl acrylate synthesis using deep eutectic solvent [Im:2PTSA]. Green Energy&Environment, 2021, 6(3): 405-412. doi: 10.1016/j.gee.2020.12.020 |
2-Ethylhexyl acrylate (2-EHA) is one of the most widely used acrylates in the polymer industry, which is synthesized via Fisher esterification that is limited by chemical equilibrium. To intensify the esterification process, in this work, reactive extraction concept is proposed, with halogen-free deep eutectic solvent (DES [Im:2PTSA]) as dual solvent-catalyst that consists of imidazole (Im) andp-toluenesulfonamide (PTSA). The bifunctional effects of the DES [Im:2PTSA] are evaluated by thermodynamic analysis and experimental study. Favorable phase splitting is verified byσ-potential analysis predicted by COSMO-RS theory, combined with experiments, and the optimal acid-to-alcohol molar ratio is set to 1.2. The esterification kinetics is then experimentally determined and fitted using the molar-based and activity-based pseudo-homogeneous (PH) models, respectively. The activity-based PH model, that considers the bifunctional roles of the DES, proves to be more accurate with small RMSD of 0.0344. The stability of DES after recycling is validated to further confirm the industrial prospects of DES [Im:2PTSA] in 2-EHA production.
Reactive extraction is proposed for 2-ethylhexyl acrylate synthesis intensified by bifunctional deep eutectic solvent (DES), the role as catalyst and extractant is verified by thermodynamic analysis and kinetic modeling.
[1] |
G. Klein, V. Le Houerou, R. Muller, C. Gauthier, Y. Holl, Tribology International 53 (2012) 142-149.
|
[2] |
Y. Peykova, O.V. Lebedeva, A. Diethert, P. Muller-Buschbaum, N. Willenbacher, International Journal of Adhesion and Adhesives 34 (2012) 107-116.
|
[3] |
R.E. Kirk, D.F. Othmer, J.I. Kroschwitz, M. Howe-Grant, Encyclopedia of Chemical Technology. Vol. 17, Nickel and Nickel Alloys to Paint, Wiley, 1947.
|
[4] |
S. Kudla, M. Kaledkowska, Przemysl Chemiczny 77 (1998) 86-91.
|
[5] |
Q. Zeng, Z. Song, H. Qin, H. Cheng, L. Chen, M. Pan, Y. Heng, Z. Qi, Catalysis Today 339 (2020) 113-119.
|
[6] |
M. Hino, K. Arata, Applied Catalysis 18 (1985) 401-404.
|
[7] |
Zhao D., Liu M., Ge J., Zhang J., Ren P., Chin. J. Org. Chem. 32 (2012) 2382. doi: 10.6023/cjoc201207002
|
[8] |
Q. Zeng, B. Hu, H. Cheng, L. Chen, J. Huang, Z. Qi, The Journal of Chemical Thermodynamics 122 (2018) 162-169.
|
[9] |
E. Sert, F.S. Atalay, Chemical Engineering and Processing: Process Intensification 81 (2014) 41-47.
|
[10] |
J. Lu, S. Guo, Y. Fu, J. Chang, Fuel Processing Technology 161 (2017) 193-198.
|
[11] |
T. Sundqvist, A. Oasmaa, A. Koskinen, Energy Fuels 29 (2015) 2527-2534. doi: 10.1021/acs.energyfuels.5b00238
|
[12] |
D.S.M. Constantino, C.S.M. Pereira, R.P.V. Faria, A.F.P. Ferreira, J.M. Loureiro, Alirio.E. Rodrigues, AIChE J. 61 (2015) 1263-1274. doi: 10.1002/aic.14701
|
[13] |
N. Calvar, B. Gonzalez, A. Dominguez, Chemical Engineering and Processing: Process Intensification 46 (2007) 1317-1323.
|
[14] |
M. Mallaiah, Chem.Biochem.Eng.Q. 31 (2017) 293-302.
|
[15] |
Y.-T. Tang, Y.-W. Chen, H.-P. Huang, C.-C. Yu, S.-B. Hung, M.-J. Lee, AIChE J. 51 (2005) 1683-1699. doi: 10.1002/aic.10519
|
[16] |
M. Mokhtarzadeh, R.E. Murray, Transvinylation Process by Reactive Distillation, Google Patents, 1993.
|
[17] |
Q. Zeng, H. Qin, H. Cheng, L. Chen, Z. Qi, Chemical Engineering Science: X 1 (2019) 100001.
|
[18] |
L. Chen, L. Chen, Y. Ye, Z. Qi, H. Freund, K. Sundmacher, Catalysis Communications, 28(11) (2012) 143-146.
|
[19] |
D. Peng, J. Zhang, H. Cheng, L. Chen, Z. Qi. Chemical Engineering Science 159 (2017) 58-68.
|
[20] |
L. Chen, T. Zhou, L. Chen, Y. Ye, Z. Qi, H. Freund, K. Sundmacher, Chemical Communications, 47 (2011) 9354-9356. doi: 10.1039/c1cc12989a
|
[21] |
X. Zhang, X. Zhang, H. Dong, Z. Zhao, S. Zhang, Y. Huang, Energy & Environmental Science 5 (2012) 6668-6681. doi: 10.1039/c2ee21152a
|
[22] |
A. Kamimura, Y. Shiramatsu, T. Kawamoto, Green Energy & Environment 4 (2019) 166-170.
|
[23] |
S.M. Grimes, P. Kewcharoenwong, Journal of Chemical Technology & Biotechnology 92 (2017) 2098-2105. doi: 10.1002/jctb.5207
|
[24] |
T. Joseph, S. Sahoo, S.B. Halligudi, Journal of Molecular Catalysis A: Chemical 234 (2005) 107-110.
|
[25] |
A. Paiva, R. Craveiro, I. Aroso, M. Martins, R.L. Reis, A.R.C. Duarte, ACS Sustainable Chemistry & Engineering 2 (2014) 1063-1071. doi: 10.1021/sc500096j
|
[26] |
E.L. Smith, A.P. Abbott, K.S. Ryder, Chemical Reviews 114 (2014) 11060-11082. doi: 10.1021/cr300162p
|
[27] |
D.O. Abranches, M.A.R. Martins, L.P. Silva, N. Schaeffer, S.P. Pinho, J.A.P. Coutinho, Chem. Commun. 55 (2019) 10253-10256. doi: 10.1039/c9cc04846d
|
[28] |
A. Hayyan, M.A. Hashim, M. Hayyan, F.S. Mjalli, I.M. AlNashef, Journal of Cleaner Production 65 (2014) 246-251.
|
[29] |
A. Hayyan, M.A. Hashim, M. Hayyan, F.S. Mjalli, I.M. AlNashef, Industrial Crops and Products 46 (2013) 392-398.
|
[30] |
E. Sert, International Journal of Chemical Reactor Engineering 13 (2015) 389-393. doi: 10.1515/ijcre-2014-0164
|
[31] |
H. Qin, Z. Song, Q. Zeng, H. Cheng, L. Chen, Z. Qi, AIChE Journal 65 (2018) 675-683.
|
[32] |
L. Cao, J. Huang, X. Zhang, S. Zhang, J. Gao, S. Zeng, Physical Chemistry Chemical Physics 17 (2015) 27306-27316. doi: 10.1039/C5CP04050G
|
[33] |
A. Klamt, F. Eckert, Fluid Phase Equilibria 172 (2000) 43-72.
|
[34] |
F. Eckert, A. Klamt, AIChE Journal 48 (2002) 369-385.
|
[35] |
Z. Lei, B. Chen, C. Li, Chemical Engineering Science 62 (2007) 3940-3950.
|
[36] |
Z. Song, X. Li, H. Chao, F. Mo, T. Zhou, H. Cheng, L. Chen, Z. Qi, Energy & Environment 4 (2019) 154-165.
|
[37] |
T. Zhou, Z. Qi, K. Sundmacher, Chemical Engineering Science 115 (2014) 177-185.
|
[38] |
K. Li, W. Xue, Z. Zeng, X. Shi, Can. J. Chem. Eng. 97 (2019) 1144-1151. doi: 10.1002/cjce.23349
|
[39] |
J. Yang, L. Zhou, X. Guo, L. Li, P. Zhang, R. Hong, T. Qiu, Chemical Engineering Journal 280 (2015) 147-157.
|
[40] |
H. Qin, X. Hu, J. Wang, H. Cheng, L. Chen, Z. Qi, Green Energy & Environment 5 (2020) 8-21.
|
[41] |
Z. Yang, X. Cui, H. Jie, X. Yu, Y. Zhang, T. Feng, H. Liu, K. Song, Ind. Eng. Chem. Res. 54 (2015) 1204-1215. doi: 10.1021/ie503853v
|
[42] |
S.Y. Chin, M.A.A. Ahmad, M.R. Kamaruzaman, C.K. Cheng, Chemical Engineering Science 129 (2015) 116-125.
|
[43] |
M.A.A. Ahmad, M.R. Kamaruzzaman, S.Y. Chin, Process Safety and Environmental Protection 92 (2014) 522-531.
|
[44] |
R. Martinez, M.T. Sanz, S. Beltran, E. Corcuera, J. Chem. Eng. Data 57 (2012) 1480-1485. doi: 10.1021/je2013878
|
[45] |
J. Han, C. Dai, G. Yu, Z. Lei, Green Energy & Environment 3 (2018) 247-265.
|
[46] |
F. Bezold, M.E. Weinberger, M. Minceva, Fluid Phase Equilibria 437 (2017) 23-33.
|