Volume 6 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
Kai Wang, Huijin Xu, Chen Yang, Ting Qiu. Machine learning-based ionic liquids design and process simulation for CO2 separation from flue gas. Green Energy&Environment, 2021, 6(3): 432-443. doi: 10.1016/j.gee.2020.12.019
Citation: Kai Wang, Huijin Xu, Chen Yang, Ting Qiu. Machine learning-based ionic liquids design and process simulation for CO2 separation from flue gas. Green Energy&Environment, 2021, 6(3): 432-443. doi: 10.1016/j.gee.2020.12.019

Machine learning-based ionic liquids design and process simulation for CO2 separation from flue gas

doi: 10.1016/j.gee.2020.12.019
  • Rational design of ionic liquids (ILs), which is highly dependent on the accuracy of the model used, has always been crucial for CO2 separation from flue gas. In this study, a support vector machine (SVM) model which is a machine learning approach is established, so as to improve the prediction accuracy and range of IL melting points. Based on IL melting points data with 600 training data and 168 testing data, the estimated average absolute relative deviations (AARD) and squared correlation coefficients (R2) are 3.11%, 0.8820 and 5.12%, 0.8542 for the training set and testing set of the SVM model, respectively. Then, through the melting points model and other rational design processes including conductor-like screening model for real solvents (COSMO-RS) calculation and physical property constraints, cyano-based ILs are obtained, in which tetracyanoborate [TCB]- is often ruled out due to incorrect estimation of melting points model in the literature. Subsequently, by means of process simulation using Aspen Plus, optimal IL are compared with excellent IL reported in the literature. Finally, 1-ethyl-3-methylimidazolium tricyanomethanide [EMIM][TCM] is selected as a most suitable solvent for CO2 separation from flue gas, the process of which leads to 12.9% savings on total annualized cost compared to that of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide [EMIM][Tf2N].

     

    The optimal ionic liquids are designed, selected and evaluated by the COSMO-RS model, support vector machine model and industrial process simulation, respectively, to apply for CO2 separation from the flue gas.

  • loading
  • [1]
    WMO, Greenh Gas B. https://library.wmo.int/index.php?lvl=notice_display&id=3030#.X-ruMXbgJFA.
    [2]
    IEA, Global Energy & CO2 Status Report 2019. https://www.iea.org/reports/global-energy-co2-status-report-2019.
    [3]
    T. Wang, J. Hovland, K.J. Jens, J Environ Sci-China. 27 (2015) 276-289.
    [4]
    M. Wang, A. Lawal, P. Stephenson, J. Sidders, C. Ramshaw, Chem Eng Res Des. 89 (2011) 1609-1624.
    [5]
    C.-H. Yu, C.-H. Huang, C.-S. Tan, Aerosol Air Qual Res. 12 (2012) 745-769. doi: 10.4209/aaqr.2012.05.0132
    [6]
    Z. Lei, C. Dai, B. Chen, Chem Rev. 114 (2014) 1289-1326. doi: 10.1021/cr300497a
    [7]
    Y. Huang, X. Zhang, X. Zhang, H. Dong, S. Zhang, Ind Eng Chem Res. 53 (2014) 11805-11817. doi: 10.1021/ie501538e
    [8]
    L. Jiang, K. Mei, K. Chen, R. Dao, H. Li, C. Wang, Green Energy Environ. (2020), 10.1016/j.gee.2020.08.008
    [9]
    P. Garcia-Gutierrez, J. Jacquemin, C. Mccrellis, I. Dimitriou, S.F.R. Taylor, C. Hardacre, R.W.K. Allen, Energy Fuel. 30 (2016) 5052-5064. doi: 10.1021/acs.energyfuels.6b00364
    [10]
    X. Liu, Y. Chen, S. Zeng, X. Zhang, S. Zhang, X. Liang, R. Gani, G.M. Kontogeorgis, AIChE J. 66 (2019).
    [11]
    L.A. Blanchard, D. Hancu, E.J. Beckman, J.F. Brennecke, Nature. 399 (1999) 28-29. doi: 10.1038/19887
    [12]
    M. Pan, N. Cao, W. Lin, X. Luo, K. Chen, S. Che, H. Li, C. Wang, ChemSusChem. 9 (2016) 2351-2357. doi: 10.1002/cssc.201600402
    [13]
    Y. Zhao, R. Gani, R.M. Afzal, X. Zhang, S. Zhang, AIChE J. 63 (2017) 1353-1367. doi: 10.1002/aic.15618
    [14]
    C. Zhang, J. Wu, R. Wang, E. Ma, L. Wu, J. Bai, J. Wang, Green Energy Environ. (2020), 10.1016/j.gee.2020.08.001
    [15]
    J. Han, C. Dai, G. Yu, Z. Lei, Green Energy Environ. 3 (2018) 247-265.
    [16]
    Z. Song, C. Zhang, Z. Qi, T. Zhou, K. Sundmacher, AIChE J. 64 (2018) 1013-1025. doi: 10.1002/aic.15994
    [17]
    M. Mu, J. Cheng, C. Dai, N. Liu, Z. Lei, Y. Ding, J. Lu, Green Energy Environ. 4 (2019) 190-197.
    [18]
    M.T. Mota Martinez, M.C. Kroon, C.J. Peters, J Supercrit Fluid. 101 (2015) 54-62.
    [19]
    R. Farahipour, A. Mehrkesh, A.T. Karunanithi, Chem Eng Sci. 145 (2016) 126-132.
    [20]
    J. Wang, Z. Song, H. Cheng, L. Chen, L. Deng, Z. Qi, ACS Sustain Chem Eng. 6 (2018) 12025-12035. doi: 10.1021/acssuschemeng.8b02321
    [21]
    J. Wang, Z. Song, X. Li, H. Cheng, L. Chen, Z. Qi, Ind Eng Chem Res. 59 (2020) 2093-2103. doi: 10.1021/acs.iecr.9b05684
    [22]
    F. Gharagheizi, P. Ilani-Kashkouli, A.H. Mohammadi, Fluid Phase Equilibr. 329 (2012) 1-7.
    [23]
    J.A. Lazzus, Fluid Phase Equilibr. 313 (2012) 1-6.
    [24]
    J.O. Valderrama, C.A. Faundez, V.J. Vicencio, Ind Eng Chem Res. 53 (2014) 10504-10511. doi: 10.1021/ie5010459
    [25]
    K. Paduszynski, U. Domanska, J Chem Inf Model. 54 (2014) 1311-1324. doi: 10.1021/ci500206u
    [26]
    K. Paduszynski, Ind Eng Chem Res. 58 (2019) 17049-17066. doi: 10.1021/acs.iecr.9b03150
    [27]
    J.A. Lazzus, G. Pulgar-Villarroel, J Mol Liq. 209 (2015) 161-168.
    [28]
    V. Venkatraman, S. Evjen, H.K. Knuutila, A. Fiksdahl, B.K. Alsberg, J Mol Liq. 264 (2018) 318-326.
    [29]
    J.O. Valderrama, Ind Eng Chem Res. 53 (2013) 1004-1014.
    [30]
    A. Barati-Harooni, A. Najafi-Marghmaleki, A.H. Mohammadi, J Mol Liq. 231 (2017) 462-473.
    [31]
    J.A. Lazzus, F. Cuturrufo, G. Pulgar-Villarroel, I. Salfate, P. Vega, Ind Eng Chem Res. 56 (2017) 6869-6886. doi: 10.1021/acs.iecr.7b01233
    [32]
    Y. Zhao, X. Zhang, L. Deng, S. Zhang, Comput Chem Eng. 92 (2016) 37-42.
    [33]
    A. Barati-Harooni, A. Najafi-Marghmaleki, A.H. Mohammadi, J Mol Liq. 227 (2017) 324-332.
    [34]
    Z. Song, H. Shi, X. Zhang, T. Zhou, Chem Eng Sci. 223 (2020).
    [35]
    Y. Cao, J. Yu, H. Song, X. Wang, S. Yao, J Serb Chem Soc. 78 (2013) 653-667.
    [36]
    A. Klamt, F. Eckert, Fluid Phase Equilibr. 172 (2000) 43-72.
    [37]
    S. Mortazavi-Manesh, M. Satyro, R.A. Marriott, Fluid Phase Equilibr. 307 (2011) 208-215.
    [38]
    C. Dai, Z. Lei, B. Chen, AIChE J. 63 (2017) 1792-1798. doi: 10.1002/aic.15711
    [39]
    P.J. Carvalho, K.A. Kurnia, J.A. Coutinho, Phys Chem Chem Phys. 18 (2016) 14757-14771. doi: 10.1039/C6CP01896C
    [40]
    J. Palomar, M. Larriba, J. Lemus, D. Moreno, R. Santiago, C. Moya, J. De Riva, G. Pedrosa, Sep Purif Technol. 213 (2019) 578-586.
    [41]
    C.-C. Chang, C.-J. Lin, ACM T INTEL SYST TEC. 2 (2011) 1-27. doi: 10.1145/1961189.1961199
    [42]
    M. Taheri, R. Zhu, G. Yu, Z. Lei, Chem Eng Sci. 230 (2021) 116199.
    [43]
    X. Liu, T. Zhou, X. Zhang, S. Zhang, X. Liang, R. Gani, G.M. Kontogeorgis, Chem Eng Sci. 192 (2018) 816-828.
    [44]
    N. Farahani, F. Gharagheizi, S.A. Mirkhani, K. Tumba, Thermochim Acta. 549 (2012) 17-34.
    [45]
    M.T. Mota-Martinez, P. Brandl, J.P. Hallett, N. Mac Dowell, Mol Syst Des Eng. 3 (2018) 560-571.
    [46]
    K.M. Gupta, Fluid Phase Equilibr. 415 (2016) 34-41.
    [47]
    Z. Song, X. Li, H. Chao, F. Mo, T. Zhou, H. Cheng, L. Chen, Z. Qi, Green Energy Environ. 4 (2019) 154-165.
    [48]
    V.R. Ferro, C. Moya, D. Moreno, R. Santiago, J. De Riva, G. Pedrosa, M. Larriba, I. Diaz, J. Palomar, Ind Eng Chem Res. 57 (2018) 980-989. doi: 10.1021/acs.iecr.7b04031
    [49]
    D. Hospital-Benito, J. Lemus, C. Moya, R. Santiago, J. Palomar, Chem Eng J. 390 (2020).
    [50]
    G. Yu, C. Dai, B. Wu, N. Liu, B. Chen, R. Xu, Green Energy Environ. (2020), 10.1016/j.gee.2020.10.022
    [51]
    J.O. Valderrama, L.A. Forero, R.E. Rojas, Ind Eng Chem Res. 54 (2015) 3480-3487. doi: 10.1021/acs.iecr.5b00260
    [52]
    M. Ramdin, T.W. De Loos, T.J.H. Vlugt, Ind Eng Chem Res. 51 (2012) 8149-8177. doi: 10.1021/ie3003705
    [53]
    S.N.V.K. Aki, B.R. Mellein, Saurer, E. M, J.F. Brennecke, J Phys Chem B. 108 (2004) 20355-20365. doi: 10.1021/jp046895+
    [54]
    J.L. Anthony, J.L. Anderson, E.J. Maginn, J.F. Brennecke, J Phys Chem B. 109 (2005) 6366-6374. doi: 10.1021/jp046404l
    [55]
    J. De Riva, J. Suarez-Reyes, D. Moreno, I. Diaz, V. Ferro, J. Palomar, Int J Greenh Gas Con. 61 (2017) 61-70.
    [56]
    G. Yu, X. Sui, Z. Lei, C. Dai, B. Chen, AIChE J, 65 (2019) 479-482. doi: 10.1002/aic.16450
    [57]
    J. De Riva, V.R. Ferro, L. Del Olmo, E. Ruiz, R. Lopez, J. Palomar, Ind Eng Chem Res. 53 (2014) 10475-10484. doi: 10.1021/ie5014426
    [58]
    Y. Ma, J. Gao, Y. Wang, J. Hu, P. Cui, Int J Greenh Gas Con. 75 (2018) 134-139.
    [59]
    M.B. Shiflett, D.W. Drew, R.A. Cantini, A. Yokozeki, Energy Fuel. 24 (2010) 5781-5789. doi: 10.1021/ef100868a
    [60]
    T. Ma, J. Wang, Z. Du, A.A. Abdeltawab, A.M. Al-Enizi, X. Chen, G. Yu, Int J Greenh Gas Con. 58 (2017) 223-231.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (219) PDF downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return