Volume 7 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
Jiaqi Wu, Lei Zhang, Jinxing Long, Qiang Zeng, Biaolin Yin, Xuehui Li. Synthesis and fluorescent properties of quinoxaline derived ionic liquids. Green Energy&Environment, 2022, 7(5): 996-1005. doi: 10.1016/j.gee.2020.12.018
Citation: Jiaqi Wu, Lei Zhang, Jinxing Long, Qiang Zeng, Biaolin Yin, Xuehui Li. Synthesis and fluorescent properties of quinoxaline derived ionic liquids. Green Energy&Environment, 2022, 7(5): 996-1005. doi: 10.1016/j.gee.2020.12.018

Synthesis and fluorescent properties of quinoxaline derived ionic liquids

doi: 10.1016/j.gee.2020.12.018
  • Ionic liquids (ILs) have attracted increasing attention since last few decades due to their high molecular design abilities and wide applications in different fields. In this study, four novel fluorescent isoquinolino [2,1-a]quinoxalin-5-ium ILs were designed and synthesized via a two-step process including a simple dual Schiff's base formation and a subsequent [RhCp*Cl2]2-catalyzed oxidative C–H activation/annulation reaction. The as-synthesized ILs were extensively characterized using FT-IR, 1H-NMR, 13C-NMR, 19F-NMR, HSQC-NMR, HMBC-NMR and HR-MS. Their photophysical properties were determined by steady-state fluorescence spectroscopy. The results demonstrate that all these ILs showed dual or triple emissions, large stokes shift (90 nm) and mechanochromic behaviors. Basing on solvatochromism and titration experiments, it is thought that the emission bands of the ILs are raised from their local excited states, charge transfer states or excited state proton transfer of cations, while the substitute effect of these quinoxaline derived ILs on their stokes shifts is negligible.

     

  • loading
  • [1]
    N. G. Khaligh, O. C. Ling, M. R. Johan and J. J. Ching, J. Mol. Struct. 1180 (2019) 280-284
    [2]
    T. Welton, Biophys. Rev. 10 (2018) 691-706
    [3]
    Y. Qiao, W. Ma, N. Theyssen, C. Chen and Z. Hou, Chem. Rev. 117 (2017) 6881-6928
    [4]
    W. Sun, M, Wang, Y. Zhang, W. Ding, F. Huo, L. Wei, H, He, Green Energy Environ. 5 (2020) 183-194
    [5]
    Z. Fei, T. J. Geldbach, D. Zhao and P. J. Dyson, Chem. Euro. J. 12 (2006) 2122-2130
    [6]
    S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan, F. Fu, M. Kawecki, X. Liu, N. Sakai, J. T.-W. Wang, S. Huettner, S. Buecheler, M. Fahlman, F. Gao and H. J. Snaith, Nature 571 (2019) 245-250
    [7]
    S. P. M. Ventura, E. S. FA, M. V. Quental, D. Mondal, M. G. Freire and J. A. P. Coutinho, Chem. Rev. 117 (2017) 6984-7052
    [8]
    M. M. Santos, L. R. Raposo, G. V. S. M. Carrera, A. Costa, M. Dionisio, P. V. Baptista, A. R. Fernandes and L. C. Branco, ChemMedChem 14 (2019) 907-911
    [9]
    C. Hardacre and V. Parvulescu, Catalysis in Ionic Liquids:From Catalyst Synthesis to Application. the Royal Society of Chemistry:2014
    [10]
    J. P. Hallett and T. Welton, Chem. Rev. 111 (2011) 3508-3576
    [11]
    G. Wang, Z. Li, C. Li, S. Zhang, Green Energy Environ. 4(2019) 293-299
    [12]
    J. Xin, D. Yan, R. Cao, X. Lu, H. Dong, S. Zhang, Green Energy Environ. 1 (2016) 144-148
    [13]
    C. V. Manohar, K. A. Raj, M. Kar, M. Forsyth, D. R. MacFarlane and S. Mitra, Sustain. Energy Fuels 2 (2018) 566-576
    [14]
    L. Gan, J. Guo, S. Che, Q. Xiao, M. Wang, J. You, C. Wang, Green Energy Environ. 5 (2020) 195-202
    [15]
    J. Wang, Green Energy Environ. 5 (2020) 122-123
    [16]
    X. W. Chen, J. W. Liu and J. H. Wang, J Phys. Chem. B 115 (2011) 1524-1530
    [17]
    S. Schmode and R. Ludwig, Chem. Commun. 53 (2017) 10761-10764
    [18]
    Z. Fei, D.-R. Zhu, X. Yang, L. Meng, Q. Lu, W. H. Ang, R. Scopelliti, C. G. Hartinger and P. J. Dyson, Chem. Euro. J. 16 (2010) 6473-6481
    [19]
    K. Goossens, K. Lava, C. W. Bielawski and K. Binnemans, Chem. Rev. 116 (2016) 4643-4807
    [20]
    M. Yang, K. Stappert and A.-V. Mudring, J. Mater. Chem. C 2 (2014) 458-473
    [21]
    K. Lunstroot, K. Driesen, P. Nockemann, C. Gorller-Walrand, K. Binnemans, S. Bellayer, J. Le Bideau and A. Vioux, Chem. Mater. 18 (2006) 5711-5715
    [22]
    T. Tominaga and T. Mochida, Chem. Euro. J. 24 (2018) 6239-6247
    [23]
    O. Hinsberg, Ber. Dtsch. Chem. Ges. 17 (1884) 318-323
    [24]
    Wang, S., Hou, Z., Liang, S., Bull. Environ. Contam. Toxicol. 105 (2020) 602-606
    [25]
    M. Bruchez Jr, Science 281 (1998) 2013-2016
    [26]
    C.-J. Chen, Y.-C. Wu, H.-S. Sheu, G.-H. Lee and C. K. Lai, Tetrahedron 67 (2011) 114-124
    [27]
    M. R. Reddy, S. H. Han, J. Y. Lee and S. Seo, Dyes Pigments 153 (2018) 132-136
    [28]
    D. Schneidenbach, S. Ammermann, M. Debeaux, A. Freund, M. Zollner, C. Daniliuc, P. G. Jones, W. Kowalsky and H.-H. Johannes, Inorg. Chem. 49 (2010) 397-406
    [29]
    S. K. Dey, M. AlKobaisi and S. V. Bhosale, ChemistryOpen 7 (2018) 934-952
    [30]
    M. Delor, S. A. Archer, T. Keane, A. Meijer, I. V. Sazanovich, G. M. Greetham, M. Towrie and J. A. Weinstein, Nat. Chem. 9 (2017) 1099-1104
    [31]
    K. Choi and A. D. Hamilton, Angew. Chem. Int. Ed. 40 (2001) 3912-3915
    [32]
    A. Weller, Progress in reaction kinetics and mechanism 1 (1961) 187-213
    [33]
    Z. P. Wang, J. Y. Wang, J. R. Li, M. L. Feng, G. D. Zou and X. Y. Huang, Chem. Commun. 51 (2015) 3094-3097
    [34]
    R. S. Bhosale, S. R. Sarda, S. S. Ardhapure, W. N. Jadhav, S. R. Bhusare and R. P. Pawar, Tetrahedron Lett. 46 (2005) 7183-7186
    [35]
    X. Z. Zhang, J. X. Wang, Y. J. Sun and H. W. Zhan, Chin. Chem. Lett. 21 (2010) 395-398
    [36]
    M. Lian, Q. Li, Y. Zhu, G. Yin and A. Wu, Tetrahedron 68 (2012) 9598-9605
    [37]
    G. Zhang, L. Yang, Y. Wang, Y. Xie and H. Huang, J. Am. Chem. Soc. 135 (2013) 8850-8853
    [38]
    M. Liu, S. Y. Jia, C. Z. Li, A. F. Zhang, C. S. Song and X. W. Guo, Chin. J. Catal. 35 (2014) 723-732
    [39]
    M. M. Kaganskii, G. G. Dvoryantseva, I. V. Sokolova and V. I. Danilova, Chem. Heterocycl. Compd. 11 (1975) 102-107
    [40]
    W. Rettig, Angew. Chem. Int. Ed. Engl. 25 (1986) 971-988
    [41]
    X. Liu, Q. Qiao, W. Tian, W. Liu, J. Chen, M. J. Lang and Z. Xu, J. Am. Chem. Soc. 138 (2016) 6960-6963
    [42]
    A. P. Demchenko, Lumin. 17 (2002) 19-42
    [43]
    W. C. Galley and R. M. Purkey, Proc. Natl. Acad. Sci. U. S. A. 67 (1970) 1116-1121
    [44]
    M. Mac, A. Danel, A. Wisla, A. Karocki and R. Krolicki, J. Photochem. Photobiol. A 180 (2006) 88-100
    [45]
    E. Lippert, Z. Naturforsch. A, 10 (1955) 541-545
    [46]
    H. Song, K. Wang, Z. Kuang, Y. S. Zhao, Q. Guo and A. Xia, Phys. Chem. Chem. Phys. 21 (2019) 3894-3902
    [47]
    N. Mataga, Y. Kaifu and M. Koizumi, Bull. Chem. Soc. Jpn. 28 (1955) 690-691
    [48]
    Z. R. Grabowski, K. Rotkiewicz and W. Rettig, Chem. Rev. 103 (2003) 3899-4032
    [49]
    T. Kumpulainen, A. Rosspeintner, B. Dereka and E. Vauthey, J. Phys. Chem. Lett. 8 (2017) 4516-4521
    [50]
    M. Mac, P. Kwiatkowski and U. Pischel, Chem. Phys. Lett. 357 (2002) 440-449
    [51]
    S. Kaur, V. Bhalla, V. Vij and M. Kumar, J. Mat. Chem. C 2 (2014) 3936-3941
    [52]
    C. A. Rodrigues, C. Graca, E. Macoas, A. Fedorov, C. A. Afonso and J. M. Martinho, J. Phys. Chem. B 117 (2013) 14108-14114
    [53]
    A. Niemczynowicz, G. Czernel, A. Matwijczuk, M. Makowski, K. Pustula, D. Karcz, A. Matwijczuk, A. Gorecki and A. I. Piotrowicz-Cieslak, J. Lumin. 208 (2019) 125-134
    [54]
    N. Walker and D. Stuart, International Tables for Crystallography Volume A:Space-group symmetry. Published for the International Union of Crystallography by Kluwer Academic Publishers, The Netherlands, 2002
    [55]
    L. Yao, B. Yang and Y. Ma, Sci. Chin. Chem. 57 (2014) 335-345
    [56]
    C. Hardacre, J. D. Holbrey, C. L. Mullan, M. Nieuwenhuyzen, W. M. Reichert, K. R. Seddon and S. J. Teat, N. J. Chem. 32 (2008) 1953-1967
    [57]
    O. Ostroverkhova, Chem. Rev. 116 (2016) 13279-13412
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (233) PDF downloads(11) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return