Volume 6 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
Huaiwei Shi, Xiang Zhang, Kai Sundmacher, Teng Zhou. Model-based optimal design of phase change ionic liquids for efficient thermal energy storage. Green Energy&Environment, 2021, 6(3): 392-404. doi: 10.1016/j.gee.2020.12.017
Citation: Huaiwei Shi, Xiang Zhang, Kai Sundmacher, Teng Zhou. Model-based optimal design of phase change ionic liquids for efficient thermal energy storage. Green Energy&Environment, 2021, 6(3): 392-404. doi: 10.1016/j.gee.2020.12.017

Model-based optimal design of phase change ionic liquids for efficient thermal energy storage

doi: 10.1016/j.gee.2020.12.017
  • The selection of phase change material (PCM) plays an important role in developing high-efficient thermal energy storage (TES) processes. Ionic liquids (ILs) or organic salts are thermally stable, non-volatile, and non-flammable. Importantly, researchers have proved that some ILs possess higher latent heat of fusion than conventional PCMs. Despite these attractive characteristics, yet surprisingly, little research has been performed to the systematic selection or structural design of ILs for TES. Besides, most of the existing work is only focused on the latent heat when selecting PCMs. However, one should note that other properties such as heat capacity and thermal conductivity could affect the TES performance as well. In this work, we propose a computer-aided molecular design (CAMD) based method to systematically design IL PCMs for a practical TES process. The effects of different IL properties are simultaneously captured in the IL property models and TES process models. Optimal ILs holding a best compromise of all the properties are identified through the solution of a formulated CAMD problem where the TES performance of the process is maximized. [MPyEtOH][TfO] is found to be the best material and excitingly, the identified top nine ILs all show a higher TES performance than the traditional PCM paraffin wax at 10 h thermal charging time.

     

    Using the computer-aided molecular design (CAMD) method, the best phase-change ionic liquid [MPyEtOH][TfO] is identified for efficient thermal energy storage. This material shows a higher heat storage performance than the traditional phase-change material paraffin wax.

  • loading
  • [1]
    A. Abhat, Sol. Energy 30 (1983) 313-332.
    [2]
    H. Mehling, L.F. Cabeza, Heat and Cold Storage with PCM, Springer, 2008.
    [3]
    J. Belman-Flores, J. Barroso-Maldonado, A. Rodriguez-Munoz, G. Camacho-Vazquez, Renew. Sust. Energ. Rev. 51 (2015) 955-968.
    [4]
    S. Seddegh, X. Wang, A.D. Henderson, Z. Xing, Renew. Sust. Energ. Rev. 49 (2015) 517-533.
    [5]
    D. Aydin, S.P. Casey, S. Riffat, Renew. Sust. Energ. Rev. 41 (2015) 356-367.
    [6]
    G. Fang, F. Tang, L. Cao, Renew. Sust. Energ. Rev. 40 (2014) 237-259.
    [7]
    A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Renew. Sust. Energ. Rev. 13 (2009) 318-345.
    [8]
    R.K. Sharma, P. Ganesan, V.V. Tyagi, H.S.C. Metselaar, S.C. Sandaran, Energy Convers. Manage. 95 (2015) 193-228.
    [9]
    M. Kenisarin, K. Mahkamov, Renew. Sust. Energ. Rev. 11 (2007) 1913-1965.
    [10]
    Z.B. Zhou, H. Matsumoto, K. Tatsumi, Chem. Eur. J. 12 (2006) 2196-2212. doi: 10.1002/chem.200500930
    [11]
    T. Zhou, L. Chen, Y. Ye, L. Chen, Z. Qi, H. Freund, K. Sundmacher, Ind. Eng. Chem. Res. 51 (2012) 6256-6264. doi: 10.1021/ie202719z
    [12]
    Z. Song, H. Shi, X. Zhang, T. Zhou, Chem. Eng. Sci. 223 (2020) 115752.
    [13]
    X. Kang, Z. Chen, Y. Zhao, J. Hazard. Mater. 397 (2020) 122761.
    [14]
    X. Kang, X. Liu, J. Li, Y. Zhao, H. Zhang, Ind. Eng. Chem. Res. 57 (2018) 16989-16994. doi: 10.1021/acs.iecr.8b03668
    [15]
    L. Jiang, K. Mei, K. Chen, R. Dao, H. Li, C. Wang, Green Energy & Environ. (2020).
    [16]
    H. Watanabe, T. Komura, R. Matsumoto, K. Ito, H. Nakayama, T. Nokami, T. Itoh, Green Energy & Environ. 4 (2019) 139-145.
    [17]
    N. Terasawa, S. Tsuzuki, T. Umecky, Y. Saito, H. Matsumoto, Chem. Commun. 46 (2010) 1730-1732. doi: 10.1039/b916759e
    [18]
    J. Zhu, L. Bai, B. Chen, W. Fei, Chem. Eng. J. 147 (2009) 58-62.
    [19]
    R. Vijayraghavan, U.A. Rana, G.D. Elliott, D.R. Macfarlane, Energy Technol. 1 (2013) 609-612. doi: 10.1002/ente.201300101
    [20]
    N.V. Plechkova, K.R. Seddon, Chem. Soc. Rev. 37 (2008) 123-150. doi: 10.1039/B006677J
    [21]
    Z. Song, X. Li, H. Chao, F. Mo, T. Zhou, H. Cheng, L. Chen, Z. Qi, Green Energy & Environ. 4 (2019) 154-165.
    [22]
    Z. Song, C.Y. Zhang, Z.W. Qi, T. Zhou, K. Sundmacher, AIChE J. 64 (2018) 1013-1025. doi: 10.1002/aic.15994
    [23]
    T. Zhou, Z. Song, X. Zhang, R. Gani, K. Sundmacher, Ind. Eng. Chem. Res. 58 (2019) 5777-5786. doi: 10.1021/acs.iecr.8b04245
    [24]
    T. Zhou, H. Shi, X. Ding, Y. Zhou, Chem. Eng. Sci. 229 (2021) 116076.
    [25]
    A. Felix Regin, S.C. Solanki, J.S. Saini, Renew. Energy 34 (2009) 1765-1773.
    [26]

    10.18086/swc.2011.29.07

    [27]
    N. Wakao, S. Kaguei, T. Funazkri, Chem. Eng. Sci. 34 (1979) 325-336.
    [28]
    K. Vafai, M. Sozen, J. Heat Transfer 112 (1990) 690-699. doi: 10.1115/1.2910442
    [29]
    Ionic Liquids Database - ILThermo (v2.0). https://ilthermo.boulder.nist.gov/, 2020 (accessed 15 July 2020).
    [30]
    Y. Huang, H. Dong, X. Zhang, C. Li, S. Zhang, AIChE J. 59 (2013) 1348-1359. doi: 10.1002/aic.13910
    [31]
    J.A. Lazzus, Ind. Eng. Chem. Res. 48 (2009) 8760-8766. doi: 10.1021/ie900431f
    [32]
    A. Mehrkesh, A.T. Karunanithi, Fluid Phase Equilib. 427 (2016) 498-503.
    [33]
    J.A. Lazzus, Fluid Phase Equilib. 313 (2012) 1-6.
    [34]
    L.M. Chavez-Islas, R. Vasquez-Medrano, A. Flores-Tlacuahuac, Ind. Eng. Chem. Res. 50 (2011) 5153-5168. doi: 10.1021/ie101791t
    [35]
    F.K. Chong, V. Andiappan, D.K.S. Ng, D.C.Y. Foo, F.T. Eljack, M. Atilhan, N.G. Chemmangattuvalappil, ACS Sustain. Chem. Eng. 5 (2017) 5241-5252. doi: 10.1021/acssuschemeng.7b00589
    [36]
    F.K. Chong, D.C.Y. Foo, F.T. Eljack, M. Atilhan, N.G. Chemmangattuvalappil, Mol. Syst. Des. Eng. 1 (2016) 109-121.
    [37]
    A.T. Karunanithi, A. Mehrkesh, AIChE J. 59 (2013) 4627-4640. doi: 10.1002/aic.14228
    [38]
    B.C. Roughton, B. Christian, J. White, K.V. Camarda, R. Gani, Comput. Chem. Eng. 42 (2012) 248-262.
    [39]
    D. Valencia-Marquez, A. Flores-Tlacuahuac, R. Vasquez-Medrano, Ind. Eng. Chem. Res. 51 (2012) 5866-5880. doi: 10.1021/ie201726r
    [40]
    N.D. Austin, N.V. Sahinidis, D.W. Trahan, Chem. Eng. Res. Des. 116 (2016) 2-26.
    [41]
    Statista, Average monthly sunshine hours in Germany. https://www.statista.com/statistics/982758/average-sunshine-hours-germany/, 2020 (accessed 08 August 2020).
    [42]
    F. Rajabi, C. Wilhelm, W.R. Thiel, Green Chem. 22 (2020) 4438-4444. doi: 10.1039/d0gc01354d
    [43]
    Q. Zeng, Z. Song, H. Qin, H. Cheng, L. Chen, M. Pan, Y. Heng, Z. Qi, Catal. Today 339 (2020) 113-119.
    [44]
    Z. Song, X. Hu, Y. Zhou, T. Zhou, Z. Qi, K. Sundmacher, AIChE J. 65 (2019) e16625.
    [45]
    Z. Song, T. Zhou, Z. Qi, K. Sundmacher, ACS Sustain. Chem. Eng. 5 (2017) 3382-3389. doi: 10.1021/acssuschemeng.7b00024
    [46]
    M.E. Van Valkenburg, R. Vaughn, M. Williams, J. Wilkes, Electrochem. Soc. Proc 19 (2002) 112-123. doi: 10.1149/200219.0112pv
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (201) PDF downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return