Volume 7 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
Yongxiu Chen, Xiangyu Dou, Kai Wang, Yongsheng Han. Magnetically enhancing diffusion for dendrite-free and long-term stable lithium metal anodes. Green Energy&Environment, 2022, 7(5): 965-974. doi: 10.1016/j.gee.2020.12.014
Citation: Yongxiu Chen, Xiangyu Dou, Kai Wang, Yongsheng Han. Magnetically enhancing diffusion for dendrite-free and long-term stable lithium metal anodes. Green Energy&Environment, 2022, 7(5): 965-974. doi: 10.1016/j.gee.2020.12.014

Magnetically enhancing diffusion for dendrite-free and long-term stable lithium metal anodes

doi: 10.1016/j.gee.2020.12.014
  • Lithium metal batteries are promising devices for the next-generation energy storage due to their ultrahigh theoretical specific capacity and extremely low electrochemical potential. Their inherent problem is the formation of lithium dendrites in cycling, which has induced safety concerns for almost half a century. After understanding the formation mechanism of branching structures, we propose to suppress lithium dendrites by adopting external magnetic fields to induce diffusion enhancement at the interface of the anode, thus attenuating concentration gradient there and reducing the driving force for the formation of dendritic structures. The diffusion coefficient of lithium ions is dependent on the strength of magnetic fields, confirming the effectiveness of magnetic fields in improving Li+ diffusion. After employing the magnetic field of 0.8 T, the concentration gradients at the growth front becomes nearly half of the control case, which leads to a dendrite-free lithium deposition up to the high current density of 10 mA cm-2. Both the Cu|LiCoO2 batteries and the symmetric Li|Li coin cells show a long-term stable cycling at high current densities under the assistance of magnetic field. This diffusion enhanced technique promises a facile and general approach to suppress dendritic structures in secondary batteries, which may help to develop quick charging strategies.

     

  • loading
  • [1]
    X. Meng, Y. Xu, H. Cao, X. Lin, P. Ning, Y. Zhang, Y.G. Garcia, Z. Sun, Green Energy Environ. 5 (2020) 22-36
    [2]
    Q. Guan, Y. Li, X. Bi, J. Yang, J. Zhou, X. Li, J. Cheng, Z. Wang, B. Wang, J. Lu, Adv. Energy Mater. 9 (2019) 1901434
    [3]
    Z. Tai, Y. Liu, Q. Zhang, T. Zhou, Z. Guo, H.K. Liu, S.X. Dou, Green Energy & Environ. 2 (2017) 278-284
    [4]
    X.W. Lou, D. Deng, J.Y. Lee, J. Feng, L.A. Archer, Adv. Mater. 20 (2008) 258-262
    [5]
    Y. Liu, D. Lin, Z. Liang, J. Zhao, K. Yan, Y. Cui, Nat. Commun. 7 (2016) 10992
    [6]
    Y. Lu, K. Korf, Y. Kambe, Z. Tu, L.A. Archer, Angew. Chem. Int. Ed. Engl. 53 (2014) 488-492
    [7]
    P. Zhai, Y. Wei, J. Xiao, W. Liu, J. Zuo, X. Gu, W. Yang, S. Cui, B. Li, S. Yang, Y. Gong, Adv. Energy Mater. 10 (2020) 1903339
    [8]
    Z. Zhang, Z.L. Wang, X. Lu, Adv. Energy Mater. 9 (2019) 1900487
    [9]
    D. Wang, C. Qin, X. Li, G. Song, Y. Liu, M. Cao, L. Huang, Y. Wu, iScience 23 (2020) 100781
    [10]
    M. Zhu, B. Li, S. Li, Z. Du, Y. Gong, S. Yang, Adv. Energy Mater. 8 (2018) 1703505
    [11]
    Y. Zhang, T.T. Zuo, J. Popovic, K. Lim, Y.X. Yin, J. Maier, Y.G. Guo, Mater. Today 33 (2020) 56-74
    [12]
    S. Higashi, S.W. Lee, J.S. Lee, K. Takechi, Y. Cui, Nat. Commun. 7 (2016) 11801
    [13]
    J.L. Ma, F.L. Meng, Y. Yu, D.P. Liu, J.M. Yan, Y. Zhang, X.B. Zhang, Q. Jiang, Nat. Chem. 11 (2019) 64-70
    [14]
    Q. Li, J. Chen, L. Fan, X. Kong, Y. Lu, Green Energy & Environ. 1 (2016) 18-42
    [15]
    X. Wu, K. Pan, M. Jia, Y. Ren, H. He, L. Zhang, S. Zhang, Green Energy & Environ. 4 (2019) 360-374
    [16]
    X. Liang, Q. Pang, I.R. Kochetkov, M.S. Sempere, H. Huang, X. Sun, L.F. Nazar, Nat. Energy 2 (2017) 17119
    [17]
    M. Yan, W.P. Wang, Y.X. Yin, L.J. Wan, Y.G. Guo, EnergyChem 1 (2019) 100002
    [18]
    B. Li, Y. Liu, X. Zhang, P. He, H. Zhou, Green Energy & Environ. 4 (2019) 3-19
    [19]
    M. Yan, J.Y. Liang, T.T. Zuo, Y.X. Yin, S. Xin, S.J. Tan, Y.G. Guo, L.J. Wan, Adv. Funct. Mater. 30 (2019) 1908047
    [20]
    W. Deng, X. Zhou, Q. Fang, Z. Liu, Adv. Energy Mater. 8 (2018) 1703152
    [21]
    S.T. Qi Li, Linlin Li,Yingying Lu, Yi He, Sci. Adv. 3 (2017) e1701246
    [22]
    H. Wu, D. Zhuo, D. Kong, Y. Cui, Nat. Commun. 5 (2014) 5193
    [23]
    P.G. Eshel Ben Jacob, Nature 343 (1990) 523-530
    [24]
    P. Bai, J. Li, F.R. Brushett, M.Z. Bazant, Energy Environ. Sci. 9 (2016) 3221-3229
    [25]
    H.J. Chang, A.J. Ilott, N.M. Trease, M. Mohammadi, A. Jerschow, C.P. Grey, J. Am. Chem. Soc. 137 (2015) 15209-15216
    [26]
    Y. Han, T. Yang, Y. Chen, Adv. Powder Technol. 311 (2019) 922-925
    [27]
    T. Liu, K. Wang, Y. Chen, S. Zhao, Y. Han, Green Energy & Environ. 4 (2019) 171-179
    [28]
    H. Wang, Y. Han, J. Li, Cryst. Growth Des. 13 (2013) 1820-1825
    [29]
    T. Yang, J. Liu, J. Dai, Y. Han, CrystEngComm 19 (2017) 72-79
    [30]
    Y. Chen, X. Dou, K. Wang, Y. Han, Adv. Energy Mater. 9 (2019) 1900019
    [31]
    A. Bund, S. Koehler, H.H. Kuehnlein, W. Plieth, Electrochim. Acta 49 (2003) 147-152
    [32]
    A. Bund, A. Ispas, G. Mutschke, Sci. Technol. Adv. Mater. 9 (2016) 024208
    [33]
    J.M.D.C. G.Hinds, M.E.G. Lyons, Electrochem. Commun. 3 (2001) 215-218
    [34]
    J. Dong, H. Dai, C. Wang, C. Lai, Solid State Ion. 341 (2019) 115033
    [35]
    K. Shen, Z. Wang, X. Bi, Y. Ying, D. Zhang, C. Jin, G. Hou, H. Cao, L. Wu, G. Zheng, Y. Tang, X. Tao, J. Lu, Adv. Energy Mater. 9 (2019) 1900260
    [36]
    A. Wang, Q. Deng, L. Deng, X. Guan, J. Luo, Adv. Funct. Mater. 29 (2019) 1902630
    [37]
    Y. Huang, X. Wu, L. Nie, S. Chen, Z. Sun, Y. He, W. Liu, Solid State Ion. 345 (2020) 115171
    [38]
    X. Li, J. Liang, Z. Hou, W. Zhang, Y. Wang, Y. Zhu, Y. Qian, J. Power Sources 293 (2015) 868-875
    [39]
    D. Zhou, R. Liu, Y.-B. He, F. Li, M. Liu, B. Li, Q.-H. Yang, Q. Cai, F. Kang, Adv. Energy Mater. 6 (2016) 1502214
    [40]
    R. Tao, X. Bi, S. Li, Y. Yao, F. Wu, Q. Wang, C. Zhang, J. Lu, ACS Appl. Mater. Interfaces 9 (2017) 7003-7008
    [41]
    F.E.S. G. Hinds, J. M. D. Coey, T. R. Ni Mhiochain, M. E. G. Lyons, J. Phys. Chem. B 105 (2001) 9487-9502
    [42]
    S.a.S.M. A.N. Correia, J.C.V. Sampaio, L.A. Avaca J.Chem.Soc.,Faraday Trans. 1 (1996) 37
    [43]
    S.K.R. Emmanuel Basco, J. chem. Soc., Faraday Trans. 1 77 (1981) 1696
    [44]
    A. Kelaidopoulou, G. Kokkinidis, A. Milchev, J. Electroanal. Chem. 444 (1998) 195-201
    [45]
    F.L.P. Yong Zhi Tao, Electrochemistry 10 (2004) 279
    [46]
    M.R. C. Brissot, J.-N. Chazalviel, S. Lascaud J. Power Sources 81-82 (1999) 925-929
    [47]
    S. Moon, H. Park, G. Yoon, M.H. Lee, K.-Y. Park, K. Kang, Chem. Mater. 29 (2017) 9182-9191
    [48]
    G. Zheng, C. Wang, A. Pei, J. Lopez, F. Shi, Z. Chen, A.D. Sendek, H.-W. Lee, Z. Lu, H. Schneider, M.M. Safont-Sempere, S. Chu, Z. Bao, Y. Cui, ACS Energy Lett. 1 (2016) 1247-1255
    [49]
    G. Bieker, M. Winter, P. Bieker, Phys. Chem. Chem. Phys. 17 (2015) 8670-8679
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (175) PDF downloads(22) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return