Citation: | Chenhao Jiang, Hongye Cheng, Zexian Qin, Ruizhuan Wang, Lifang Chen, Chen Yang, Zhiwen Qi, Xiucai Liu. COSMO-RS prediction and experimental verification of 1,5-pentanediamine extraction from aqueous solution by ionic liquids. Green Energy&Environment, 2021, 6(3): 422-431. doi: 10.1016/j.gee.2020.12.011 |
1,5-Pentanediamine (PDA) produced by biological fermentation becomes popular, but the separation of PDA from the broth is a typical difficult problem. In this work, the performance of 200 ionic liquids (ILs), formed by combining 25 cations and 8 anions, in the extraction of PDA from aqueous solution were evaluated using COSMO-RS model. The extraction mechanism was investigated with the help of σ-profile and interaction energy analyses. Both the cation and anion have impacts on the extraction efficiency, where cation mainly influences the interaction of IL with PDA and anion affects the hydrophobicity of IL. The IL composed of long alkyl-chain in cation and the anion of [PF6]- or [TF2N]-, which has the σ-profile more likely distributed in the nonpolar region but less distributed in the polar region, is favorable for extraction. The experimental liquid–liquid equilibrium demonstrated the effects of cation and anion on extraction performance, which validated the reliability of COSMO-RS model in IL screening for PDA extraction. The IL [IM-1,8][PF6] could serve as a promising extractant for the downstream separation process of the biological production of PDA.
COSMO-RS model was used to predict the performance of 200 ionic liquids in the extraction of 1,5-pentanediamine from aqueous solution. Experimental liquid–liquid equilibrium experiments demonstrated the effects of cation and anion on extraction performance and verified the reliability of COSMO-RS model in ionic liquid screening for 1,5-pentanediamine extraction.
[1] |
S. Kind, C. Wittmann, Appl. Microbiol. Biotechnol. 91 (2011) 1287-1296. doi: 10.1007/s00253-011-3457-2
|
[2] |
Y.-M. Moon, S.Y. Yang, T.R. Choi, H.-R. Jung, H.-S. Song, Y.H. Han, H.Y. Park, S.K. Bhatia, R. Gurav, K. Park, J.-S. Kim, Y.-H. Yang, Enzyme Microb. Technol. 127 (2019) 58-64.
|
[3] |
J. Rui, S. You, Y. Zheng, C. Wang, Y. Gao, W. Zhang, W. Qi, R. Su, Z. He, Bioresour. Technol. 302 (2020) 122844.
|
[4] |
Y.K. Leong, C.-H. Chen, S.-F. Huang, H.-Y. Lin, S.-F. Li, I.S. Ng, J.-S. Chang, Biochem. Eng. J. 157 (2020) 107547.
|
[5] |
W. Ma, K. Chen, Y. Li, N. Hao, X. Wang, P. Ouyang, Engineering 3 (2017) 308-317.
|
[6] |
Y. Tsuge, H. Kawaguchi, K. Sasaki, A. Kondo, Microb. Cell Fact. 15 (2016) 19.
|
[7] |
V.F. Wendisch, M. Mindt, F. Perez-Garcia, Appl. Microbiol. Biotechnol. 102 (2018) 3583-3594. doi: 10.1007/s00253-018-8890-z
|
[8] |
Z.-G. Qian, X.-X. Xia, S.Y. Lee, Biotechnol. Bioeng. 108 (2011) 93-103. doi: 10.1002/bit.22918
|
[9] |
A. Krzyzaniak, B. Schuur, A.B. De Haan, J. Chem. Technol. Biotechnol. 88 (2013) 1937-1945. doi: 10.1002/jctb.4058
|
[10] |
X. Liu, C. Liu, D. Dai, B. Qin, N. Li, X. Li, Purification of cadaverine from aqueous cadaverine composition comprising involatile impurities involves distilling or evaporating aqueous cadaverine composition and recovering high boiling point solvents: U.S. Patent 9,896,409[P]. 2018-2-20.
|
[11] |
J.A. Lee, J.H. Ahn, I. Kim, S. Li, S.Y. Lee, Chem. Eng. Sci. 196 (2019) 324-332. doi: 10.4094/chnr.2019.25.3.324
|
[12] |
S. Zheng, H. Cheng, L. Chen, Z. Qi, J. Chem. Thermodyn. 93 (2016) 127-131.
|
[13] |
Y.-G. Hong, H.-J. Kim, J.-M. Jeon, Y.-M. Moon, J.-W. Hong, J.-C. Joo, B.-K. Song, K.-M. Park, S.-H. Lee, Y.-H. Yang, J. Ind. Eng. Chem. 64 (2018) 167-172.
|
[14] |
S. Kind, S. Neubauer, J. Becker, M. Yamamoto, M. Volkert, G. Von Abendroth, O. Zelder, C. Wittmann, Metab. Eng. 25 (2014) 113-123.
|
[15] |
J.F. Brennecke, E.J. Maginn, AIChE J. 47 (2001) 2384-2389.
|
[16] |
Z. Song, J. Zhang, Q. Zeng, H. Cheng, L. Chen, Z. Qi, Fluid Phase Equilib. 425 (2016) 244-251.
|
[17] |
J. Han, C. Dai, Z. Lei, B. Chen, AIChE J. 64 (2018) 606-619. doi: 10.1002/aic.15926
|
[18] |
S. Zeng, X. Zhang, L. Bai, X. Zhang, H. Wang, J. Wang, D. Bao, M. Li, X. Liu, S. Zhang, Chem. Rev. 117 (2017) 9625-9673. doi: 10.1021/acs.chemrev.7b00072
|
[19] |
F.A. e Silva, M. Caban, P. Stepnowski, J.A.P. Coutinho, S.P.M. Ventura, Green Chem. 18 (2016) 3749-3757.
|
[20] |
H. Cheng, J. Zhang, Z. Qi, Mol. Simulat. 44 (2018) 55-62. doi: 10.1080/08927022.2017.1337273
|
[21] |
M.J. Trujillo-Rodriguez, H. Nan, M. Varona, M.N. Emaus, I.D. Souza, J.L. Anderson, Anal. Chem. 91 (2019) 505-531. doi: 10.1021/acs.analchem.8b04710
|
[22] |
M. Mu, J. Cheng, C. Dai, N. Liu, Z. Lei, Y. Ding, J. Lu, Green Energy Environ. 4 (2019) 190-197.
|
[23] |
P. Chandra, S.S. Shinde, A.V. Biradar, Curr. Org. Chem. 19 (2015) 728-742. doi: 10.2174/1385272819666150207001428
|
[24] |
C. Jork, C. Kristen, D. Pieraccini, A. Stark, C. Chiappe, Y.A. Beste, W. Arlt, J. Chem. Thermodyn. 37 (2005) 537-558.
|
[25] |
A. Klamt, Fluid Phase Equilib. 206 (2003) 223-235.
|
[26] |
K. Kraemer, A. Harwardt, R. Bronneberg, W. Marquardt, Comput. Chem. Eng. 35 (2011) 949-963.
|
[27] |
R. Gani, A. Fredenslund, Fluid Phase Equilib. 82 (1993) 39-46.
|
[28] |
A. Klamt, Wires. Comput. Mol. Sci. 8 (2018) e1338.
|
[29] |
A. Klamt, J. Reinisch, F. Eckert, J. Graton, J.-Y. Le Questel, Phys. Chem. Chem. Phys. 15 (2013) 7147-7154. doi: 10.1039/c3cp44611e
|
[30] |
T. Zhou, Z. Qi, K. Sundmacher, Chem. Eng. Sci. 115 (2014) 177-185.
|
[31] |
F. Eckert, A. Marat, Fluid Phase Equilib. 210 (2003) 117-141.
|
[32] |
A. Klamt, F. Eckert, Fluid Phase Equilib. 260 (2007) 183-189.
|
[33] |
P. Kolar, J.W. Shen, A. Tsuboi, T. Ishikawa, Fluid Phase Equilib. 194 (2002) 771-782.
|
[34] |
H. Cheng, C. Liu, J. Zhang, L. Chen, B. Zhang, Z. Qi, Chem. Eng. Process. 125 (2018) 246-252.
|
[35] |
Z. Song, J. Wang, K. Sundmacher, Green Energy Environ. (2020). DOI: 10.1016/j.gee.2020.11.020
|
[36] |
H. Li, G. Sun, D. Li, L. Xi, P. Zhou, X. Li, J. Zhang, X. Gao, Green Energy Environ. (2020). DOI: 10.1016/j.gee.2020.11.025
|
[37] |
L.Y. Garcia-Chavez, A.J. Hermans, B. Schuur, A.B. De Haan, Sep. Purif. Technol. 97 (2012) 2-10.
|
[38] |
C. Zhang, J. Wu, R. Wang, E. Ma, L. Wu, J. Bai, J. Wang, Green Energy Environ. (2020). DOI: 10.1016/j.gee.2020.08.001
|
[39] |
Y. Zhou, D. Xu, L. Zhang, Y. Ma, X. Ma, J. Gao, Y. Wang, J. Chem. Thermodyn. 118 (2018) 263-273.
|
[40] |
R. Sulaiman, I. Adeyemi, S.R. Abraham, S.W. Hasan, I.M. Ainashef, J. Mol. Liq. 294 (2019) 111680.
|
[41] |
S. Mohanty, T. Banerjee, K. Mohanty, Ind. Eng. Chem. Res. 49 (2010) 2916-2925. doi: 10.1021/ie901684q
|
[42] |
E.F. Aust, W. Pitner, U. Schmid-Grossmann, M. Schulte, Liquid-liquid extraction of alcohols from aqueous solution, e.g. in production of bioethanol or biobutanol, involves using an ionic liquid containing tricyanomethide anions as the extraction solvent: U.S. Patent 8,440,869[P]. 2013-3-14.
|
[43] |
K. Paduszynski, Phys. Chem. Chem. Phys. 19 (2017) 11835-11850. doi: 10.1039/C7CP00226B
|
[44] |
Z. Song, X. Hu, Y. Zhou, T. Zhou, Z. Qi, K. Sundmacher, AIChE J. 65 (2019) e16625.
|
[45] |
Z. Song, T. Zhou, Z. Qi, K. Sundmacher, ACS Sustain. Chem. Eng. 5 (2017) 3382-3389. doi: 10.1021/acssuschemeng.7b00024
|
[46] |
J. Alsenz, M. Kuentz, Mol. Pharm. 16 (2019) 4661-4669. doi: 10.1021/acs.molpharmaceut.9b00801
|
[47] |
Z. Wu, C. Liu, H. Cheng, L. Chen, Z. Qi, J. Mol. Liq. 308 (2020) 113032.
|
[48] |
A. Klamt, V. Jonas, T. Burger, J.C.W. Lohrenz, J. Phys. Chem. A 102 (1998) 5074-5085.
|
[49] |
S. Gao, S. Fang, R. Song, X. Chen, G. Yu, Green Energy Environ. 5 (2020) 173-182.
|
[50] |
F. Eckert, A. Klamt, AIChE J. 48 (2002) 369-385.
|
[51] |
J. Li, J. Wang, M. Wu, H. Cheng, L. Chen, Z. Qi, Ind. Eng. Chem. Res. 59 (2020) 9223-9232. doi: 10.1021/acs.iecr.0c00442
|
[52] |
L. Sellaoui, H. Guedidi, S. Masson, L. Reinert, J.-M. Leveque, S. Knani, A. Ben Lamine, M. Khalfaoui, L. Duclaux, Fluid Phase Equilib. 414 (2016) 156-163.
|
[53] |
A.M. Zissimos, M.H. Abraham, A. Klamt, F. Eckert, J. Wood, J. Chem. Inf. Comp. Sci. 42 (2002) 1320-1331.
|