Volume 7 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
Qian Wang, Zhu Meng, Juntao Li, Shuming Peng, Zhonghua Xiang. High retention volume covalent organic polymer for xenon capture: Dynamic separation of Xe and Kr. Green Energy&Environment, 2022, 7(5): 948-956. doi: 10.1016/j.gee.2020.12.010
Citation: Qian Wang, Zhu Meng, Juntao Li, Shuming Peng, Zhonghua Xiang. High retention volume covalent organic polymer for xenon capture: Dynamic separation of Xe and Kr. Green Energy&Environment, 2022, 7(5): 948-956. doi: 10.1016/j.gee.2020.12.010

High retention volume covalent organic polymer for xenon capture: Dynamic separation of Xe and Kr

doi: 10.1016/j.gee.2020.12.010
  • Xenon capture and Xe/Kr separation are important processes in industry. For instance, Xe/Kr separation is an indispensable step in recycle and treatment of nuclear fuel emission. Among different separation methods, selectively adsorb gas molecules using porous materials is a promising way to reduce the high energy consumption in traditional cryogenic distillation. However, many reported adsorbents still face the challenges of: i) poor separation property at low Xe/Kr concentrations; ii) insufficient retention volumes, which influence the viability of whole process. In this work, we present a stable covalent organic polymer, i.e., COP-14, showing promising potential for Xe/Kr separiton. In dynamic breakthrough experiments, COP-14 successfully separates low concentration Xe (350 ppm) and Kr (35 ppm) from target gas mixtures. Meanwhile, the xenon retention volume per gram (1700 mL g-1 at 298 K) of COP-14 in dynamics absorption process achieves 3.8 times of benchmark active carbon. The good performance of the newly devloped COP-14 mainly from its rich nitrogen sites and suitable pore size with xenon molecues. The promising results of COP-14 on Xe/Kr separation in this work provide a promising way for designing efficient Xe/Kr separation mateirals.

     

  • • A stable covalent organic polymer, i.e., COP-14, exhibits great Xe/Kr separiton perfomance. • COP-14 successfully separates low concentration Xe (350 ppm) and Kr (35 ppm) from target gas mixtures. • COP-14 obtains the xenon retention volume per gram (1700 mL g−1 at 298 K), 3.8 times of benchmark active carbon.
    These authors contributed equally.
  • loading
  • [1]
    J. Li, B.E. Bursten, B. Liang, L. Andrews, Science. 295 (2002) 2242-2245
    [2]
    H. Guo, F. Zaera, Nat. Mater. 5 (2006) 489-493;B. Wang, L. H. Xie, X. Q. Wang, X. M. Liu, J. P. Li; J. R. Li, Green Energy Environ.. 3(2018) 191-228;L. Liu, L. Wang, D. H. Liu, Q. Y. Yang, C. L. Zhong, Green Energy Environ.. 5 (2020) 333-340;C. X. Duan, Y. Yu, J. Xiao, Y. Y. Li, P. F. Yang, F. Hu, H. X. Xi, Green Energy Environ.. 5 (2020) DOI:10.1016/j.gee.2020.04.006;L. H. Dai, K. Huang, Y. S. Xia, Z. Xu, Green Energy Environ.. 5 (2020) DOI:10.1016/j.gee.2020.09.015.
    [3]
    G. Pavlovskaya, J. Six, T. Meersman, N. Gopinathan, S.P. Rigby, AIChE J. 61 (2015) 4013-4019
    [4]
    L.T. Liu, Y. Xu, P. Tang, J. Phys. Chem. B 114 (2010) 9010-9016
    [5]
    Y. Zhao, F. Fang, H.M. Xiao, Q.P. Feng, L.Y. Xiong, S.Y. Fu, Chem. Eng. J. 270 (2015) 528-534
    [6]
    Y. Yang, Z. Zhang, S. Yang, L. Ding, Chinese Patent, CN103308374-A, 2013
    [7]
    Y. Hye Kwon, C. Kiang, E. Benjamin, P. Crawford, S. Nair, R. Bhave, AIChE J. 63 (2017) 761-769
    [8]
    R.E. Bazan, M. Bastos-Neto, A. Moeller, F. Dreisbach, R. Staudt, Adsorption 17 (2011) 371-383
    [9]
    J.A. Greathouse, T.L. Kinnibrugh, M.D. Allendorf, Ind. Eng. Chem. Res. 48 (2009) 3425-3431
    [10]
    D. Banerjee, C. Simon, S. Elsaidi, M.H. Chem. 4 (2018), 446-494
    [11]
    H. Wang, K. Yao, Z. Zhang, J. Jagiello, Q. Gong, Y. Han, J. Li, Chem. Sci. 5 (2014) 620-624
    [12]
    R.S. Patil, D. Banerjee, C.M. Simon, J.L. Atwood, P.K. Thallapally, Chem. Eur. J. 22 (2016) 12618-12623
    [13]
    D. Banerjee, S. Elsaidi, P. Thallapally. J. Mater. Chem. A. 5 (2017) 16611-16615
    [14]
    M.H. Mohamed, S.K. Elsaidi, T. Pham, K.A. Forrest, H.T. Schaef, A. Hogan, L. Wojtas, W. Xu, B. Space, M.J. Zaworotko, P.K. Thallapally, Angew. Chem. 128 (2016) 8425-8429
    [15]
    J. Liu, P.K. Thallapally, D. Strachan, Langmuir. 28 (2012) 11584-11589
    [16]
    P.K. Thallapally, J.W. Grate, R.K. Motkuri, Chem. Commun. 48 (2012) 347-349
    [17]
    T. Wang, Y.-L. Peng, E. Lin, Z. Niu, P. Li, S. Ma, P. Zhao, Y. Chen, P. Cheng, Z. Zhang, Inorg. Chem. 59 (2020) 4868-4873
    [18]
    D. Banerjee, C.M. Simon, A.M. Plonka, R.K. Motkuri, J. Liu, X. Chen, B. Smit, J.B. Parise, M. Haranczyk, P.K. Thallapally, Nat. Commun. 7 (2016) 1-7
    [19]
    P. Ryan, O.K. Farha, L.J. Broadbelt, R.Q. Snurr, AIChE J. 57 (2011) 1759-1766
    [20]
    X. Chen, A.M. Plonka, D. Banerjee, R. Krishna, H.T. Schaef, S. Ghose, P.K. Thallapally, J.B. Parise, J. Am. Chem. Soc. 137 (2015) 7007-7010
    [21]
    Y. Bae, B. Hauser, Y. Colon, J. T. Hupp, O. K. Farha, R. Q. Snurr, Microporous and Mesoporous Materials. 169 (2013) 176-179
    [22]
    S. Lee, K. Kim, T. Yoon, M. Kim, Y. Bae, Microporous and Mesoporous Materials. 236 (2016) 284-291
    [23]
    J. Liu, D. Strachan, P. K. Thallapally, Chem. Commun. 50 (2014) 466-468
    [24]
    Y. Tao, Y. Fan, Z. Xu, X. Feng, R. Krishna, F. Luo, Inorg. Chem. 59 (2020) 11793-11800
    [25]
    Chen, L., Reiss, P., Chong, S., A. I. Cooper et al., Nat. Mater. 13 (2014) 954-960
    [26]
    A. S. Dorcheh, D. Denysenko, D. Volkmer, W. Donner, M. Hirscher, Microporous and Mesoporous Materials. 162 (2012) 64-68
    [27]
    Z. Xiang, R. Mercado, J.M. Huck, H. Wang, Z. Guo, W. Wang, D. Cao, M. Haranczyk, B. Smit, J. Am. Chem. Soc. 137 (2015) 13301-13307
    [28]
    S. S. Han, J. L. Mendoza-Cortes, W.A. Goddard III, Chem. Soc. Rev. 38 (2009) 1460-1476
    [29]
    Y. Li, R.T. Yang, AIChE J. 54 (2008) 269-279
    [30]
    Z. Xiang, D. Cao, J. Lan, W. Wang, D.P. Broom, Energy Environ. Sci. 3 (2010) 1469-1487
    [31]
    Z. Xiang, X. Zhou, C. Zhou, S. Zhong, X. He, C. Qin, D. Cao, J. Mater. Chem. 22 (2012) 22663-22669
    [32]
    Q. Wang, S. Xiong, Z. Xiang, S. Peng, X. Wang, D. Cao, Sci. China Chem. 59 (2016) 643-650
    [33]
    T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J.M. Simmons, S. Qiu, G. Zhu, Angew. Chem. 121 (2009) 9621-9624
    [34]
    A. Trewin, A.I. Cooper, Angew. Chem.-Int. Ed. 49 (2010) 1533-1535
    [35]
    J.M.H. Thomas, A. Trewin, J. Phys. Chem. C 118 (2014) 19712-19722
    [36]
    Z. Xiang, D. Cao, Macromol. Rapid Commun. 33 (2012) 1184-1190
    [37]
    S. Xiong, Q. Liu, Q. Wang, W. Li, Y. Tang, X. Wang, S. Hu, B. Chen, J. Mater. Chem. A 3 (2015) 10747-10752
    [38]
    U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastre, J. Mater. Chem. 16 (2006) 626-636
    [39]
    B. Sikora, M.L. Greenfield, B.J. Sikora, C.E. Wilmer, R.Q. Snurr, Chem. Sci. 3 (2012) 2217-2223
    [40]
    L. Liu, L. Wang, D. Liu, Q. Yang, C. Zhong, Green Energy Environ. 5 (2020) 333-340
    [41]
    R. Anderson, B. Schweitzer, T. Wu, M.A. Carreon, D.A. Gomez-Gualdron, ACS Appl. Mater. Inter. 10 (2018) 582-592
    [42]
    Y. Gurdal, S. Keskin, Ind. Eng. Chem. Res. 51 (2012) 7373-7382
    [43]
    S.J. Lee, K.C. Kim, T.U. Yoon, M.B. Kim, Y.S. Bae, Microporous Mesoporous Mater. 236 (2016) 284-291
    [44]
    Z. Sumer, S. Keskin, Chem. Eng. Sci. 164 (2017) 108-121
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (130) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return