Volume 7 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
Jun-Wei Zhang, Xian-Wei Lv, Tie-Zhen Ren, Zheng Wang, Teresa J. Bandosz, Zhong-Yong Yuan. Engineering heterostructured Ni@Ni(OH)2 core-shell nanomaterials for synergistically enhanced water electrolysis. Green Energy&Environment, 2022, 7(5): 1024-1032. doi: 10.1016/j.gee.2020.12.009
Citation: Jun-Wei Zhang, Xian-Wei Lv, Tie-Zhen Ren, Zheng Wang, Teresa J. Bandosz, Zhong-Yong Yuan. Engineering heterostructured Ni@Ni(OH)2 core-shell nanomaterials for synergistically enhanced water electrolysis. Green Energy&Environment, 2022, 7(5): 1024-1032. doi: 10.1016/j.gee.2020.12.009

Engineering heterostructured Ni@Ni(OH)2 core-shell nanomaterials for synergistically enhanced water electrolysis

doi: 10.1016/j.gee.2020.12.009
  • Heterostructure engineering of electrocatalysts provides a fascinating platform to reasonably manipulate the physicochemical properties of nanomaterials and further improve their catalytic efficiency for water electrolysis. However, it still remains a huge challenge to construct well-designed core-shell heterostructured catalysts and identify the key role of components for synergistic catalysis. Herein, a melted polymeric salt tactics was innovatively developed to synthesize heterostructured Ni@Ni(OH)2 core-shell nanomaterials supported on porous carbon (named Ni@Ni(OH)2/PC), wherein well-defined Ni(OH)2-Ni heterostructure plays a pivotal role in improving electrocatalytic activity for water reduction and oxidation. Besides, the stable porous carbon support functions as a highway for continuous electron transfer between Ni and Ni(OH)2, and simultaneously enables the full exposure of accessible active sites. The fabricated Ni@Ni(OH)2/PC exhibits outstanding bifunctional electrocatalytic performance for overall water splitting (η10 = 1.55 V) with a good long-time stability. This work sheds new light on the design of engineering heterostructure of active bifunctional electrocatalysts for efficient energy conversion system.

     

  • These authors contributed equally to this work.
  • loading
  • [1]
    M.S. Dresselhaus, I.L. Thomas, Nature 414 (2001) 332-337
    [2]
    Y. Jiao, Y. Zheng, M. Jaroniec, S. Qiao, Chem. Soc. Rev. 44 (2015) 2060-2086
    [3]
    M. Gong, D.Y. Wang, C.C. Chen, B. Hwang, H. Dai, Nano Res. 9 (2016) 28-46
    [4]
    S.H. Ahn, S.J. Hwang, S.J. Yoo, I. Choi, H. Kim, J.H. Jang, S.W. Nam, T.H. Lim, T. Lim, S. Kim, J. Mater. Chem. 22 (2012) 15153-15159
    [5]
    J. Wang, S. Mao, Z. Liu, Z. Wei, H. Wang, Y. Chen, Y. Wang, ACS Appl. Mater. Interfaces, 9 (2017) 7139-7147
    [6]
    X.-W. Lv, Z.-P. Hu, L. Chen, J.-T. Ren, Y.-P. Liu, Z.-Y. Yuan, ACS Sustain. Chem. Eng. 7 (2019) 12770-12778
    [7]
    L. Zhang, Y. Jia, G. Gao, X. Yan, N. Chen, J. Chen, M.T. Soo, B.J. Wood, D. Yang, A. Du, Chem, 4 (2018) 285-297
    [8]
    L. Dai, Z. Chen, L. Li, P. Yin, Z. Liu, H. Zhang, Adv. Mater. 32 (2020) 1906915
    [9]
    J. Wang, Y. Xie, Y. Yao, X. Huang, M.G. Willinger, L. Shao, J. Mater. Chem. 5 (2017) 14758-14762
    [10]
    Q. Liu, J. Huang, Y. Zhao, L. Cao, K. Li, N. Zhang, D. Yang, L. Feng, L. Feng, Nanoscale, 11 (2019) 8855-8863
    [11]
    J. Yu, M. Zhang, J. Liu, R. Chen, R. Li, Q. Liu, L. Zhou, P. Liu, J. Wang, ACS Sustain. Chem. Eng. 7 (2019) 4119-4127
    [12]
    S. Niu, W. Jiang, T. Tang, Y. Zhang, J. Li, J. Hu, Adv. Sci. 4 (2017) 1700084
    [13]
    M. Chhetri, S. Sultan, C.N.R. Rao, P. Natl. Acad. Sci. USA. 114 (2017) 8986-8990
    [14]
    M. Gong, W. Zhou, M. Tsai, J. Zhou, M. Guan, M. Lin, B. Zhang, Y. Hu, D.Y. Wang, J. Yang, Nat. Commun. 5 (2014) 4695
    [15]
    S.-S. Xu, X.-W. Lv, Y.-M. Zhao, T.-Z. Ren, Z.-Y. Yuan, J. Energy Chem. 52 (2021) 139-146
    [16]
    A.G. Vidales, K. Choi, S. Omanovic, Int. J. Hydrogen Energy 43 (2018) 12917-12928
    [17]
    H. Guo, N. Youliwasi, L. Zhao, Y. Chai, C. Liu, Appl. Surf. Sci. 435 (2018) 237-246
    [18]
    D. Yu, B. Wu, J. Ran, L. Ge, L. Wu, H. Wang, T. Xu, J. Mater. Chem. 4 (2016) 16953-16960
    [19]
    X.-W. Lv, Y. Liu, W. Tian, L. Gao, Z.-Y. Yuan, J. Energy Chem. 50 (2020) 324-331
    [20]
    J. Zheng, W. Zhou, T. Liu, S. Liu, C. Wang, L. Guo, Nanoscale 9 (2017) 4409-4418
    [21]
    G. Liu, Z. Sun, X. Zhang, H. Wang, G. Wang, X. Wu, H. Zhang, H. Zhao, J. Mater. Chem. A 6 (2018) 19201-19209
    [22]
    G.F. Chen, T.Y. Ma, Z.Q. Liu, N. Li, Y.Z. Su, K. Davey, S.Z. Qiao, Adv. Funct. Mater. 26 (2016) 3314-3323
    [23]
    Y. Zhao, T. Ren, Z. Yuan, T.J. Bandosz, Micropor. Mesopor. Mater. 297 (2020) 110033
    [24]
    X. Lv, Y. Liu, R. Hao, W. Tian, Z. Yuan, ACS Appl. Mater. Interfaces 12 (2020) 17502-17508
    [25]
    Y. Rao, Y. Wang, H. Ning, P. Li, M. Wu, ACS Appl. Mater. Interfaces 8 (2016) 33601-33607
    [26]
    S. Ni, X. Lv, T. Li, X. Yang, L. Zhang, J. Mater. Chem. 1 (2013) 1544-1547
    [27]
    H. Zhang, J.-W. Zhang, T.-Z. Ren, Z.-Y. Yuan, T.J. Bandosz, Int. J. Hydrogen Energy 45 (2020) 17493-17503
    [28]
    M.C. Biesinger, B.P. Payne, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Surf. Interface Anal. 41 (2009) 324-332
    [29]
    Y.J. Shih, Y. Huang, C.P. Huang, Electrochim. Acta 263 (2018) 261-271
    [30]
    S.R. Ede, S. Anantharaj, K.T. Kumaran, S. Mishra, S. Kundu, RSC Adv. 7 (2017) 5898-5911
    [31]
    L. Chen, X. Dong, Y. Wang, Y. Xia, Nat. Commun. 7 (2016) 11741-11741
    [32]
    L. Zan, H. Zhang, H. Tang, Q. Wei, Y. Zhao, Z. Wang, F. Fu, Electrochim. Acta 341 (2020) 136051
    [33]
    X. Lv, W. Tian, Y. Liu, Z.-Y. Yuan, Mater. Chem. Front. 3 (2019) 2428-2436
    [34]
    M. Jarosz, R.P. Socha, P. Jozwik, G.D. Sulka, Appl. Surf. Sci. 408 (2017) 96-102
    [35]
    W. Li, F. Li, H. Yang, X. Wu, P. Zhang, Y. Shan, L. Sun, Nat. Commun. 10 (2019) 1-11
    [36]
    X. Lv, J. Ren, Y. Wang, Y. Liu, Z. Yuan, ACS Sustain. Chem. Eng. 7 (2019) 8993-9001
    [37]
    C.C. Weng, J.T. Ren, H. Zhao, Z.P. Hu, Z.Y. Yuan, ACS Appl. Mater. Interfaces 11 (2019) 27823-27832
    [38]
    M. Seredych, E. Rodriguezcastellon, T.J. Bandosz, J. Mater. Chem. 2 (2014) 20164-20176
    [39]
    M. Giesbers, A.T.M. Marcelis, H. Zuilhof, Langmuir 29 (2013) 4782-4788
    [40]
    Y.L. Tan, M.A. Islam, M. Asif, B.H. Hameed, Energy 77 (2014) 926-931
    [41]
    P. Vesela, V. Slovak, J. Anal. Appl. Pyrolysis 109 (2014) 266-271
    [42]
    C. Lee, J. Ind. Eng. Chem. 18 (2012) 433-437
    [43]
    J.-T. Ren, L. Chen, Y.-S. Wang, W.-W. Tian, L.-J. Gao, Z.-Y. Yuan, ACS Sustain. Chem. Eng. 8 (2020) 223-237
    [44]
    L. Chen, J.-T. Ren, Y.-S. Wang, W.-W. Tian, L.-J. Gao, Z.-Y. Yuan, ACS Sustain. Chem. Eng. 7 (2019) 13559-13568
    [45]
    Q. Xu, H. Jiang, H. Zhang, Y. Hu, C. Li, Appl. Catal. B:Environ. 242 (2019) 60-66
    [46]
    Z. Xing, L. Gan, J. Wang, X. Yang, J. Mater. Chem. A 5 (2017) 7744-7748
    [47]
    I. Ledezmayanez, W.D.Z. Wallace, P. Sebastianpascual, V. Climent, J.M. Feliu, M.T.M. Koper, Nat. Energy 2 (2017) 17031
    [48]
    H. Jiang, Y. Lin, B. Chen, Y. Zhang, H. Liu, X. Duan, D. Chen, L. Song, Mater. Today 21 (2018) 602-610
    [49]
    C. Weng, J. Ren, Z. Yuan, ChemSusChem, 13 (2020) 3357-3375
    [50]
    W.W. Tian, J.T. Ren, X.W. Lv, L.J. Gao, Z.Y. Yuan, ChemistrySelect, 5 (2020) 3477-3484
    [51]
    S.A. Vilekar, I. Fishtik, R. Datta, J. Electrochem. Soc. 157 (2010) 18-21
    [52]
    E. Skulason, V. Tripkovic, M.E. Bjorketun, S. Gudmundsdottir, G. Karlberg, J. Rossmeisl, T. Bligaard, H. Jonsson, J.K. Norskov, J. Phys. Chem. C 114 (2010) 18182-18197
    [53]
    A. Kapalka, A. Cally, S. Neodo, C. Comninellis, M. Wachter, K.M. Udert, Electrochem. Commun. 12 (2010) 18-21
    [54]
    H. Fang, S. Zhang, T. Jiang, R. Lin, Y. Lin, Electrochim. Acta 125 (2014) 427-434
    [55]
    O. Diaz-Morales, D. Ferrus-Suspedra, M.T.M. Koper, Chem. Sci. 7 (2016) 2639-2645
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (158) PDF downloads(13) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return