Volume 7 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
Qing-Shan Kong, Xing-Long Li, Hong-Bo Shen, Hua-Jian Xu, Yao Fu. Na-MnOx catalyzed aerobic oxidative cleavage of biomass-derived 1,2-diols to synthesis medium-chain furanic chemicals. Green Energy&Environment, 2022, 7(5): 957-964. doi: 10.1016/j.gee.2020.12.007
Citation: Qing-Shan Kong, Xing-Long Li, Hong-Bo Shen, Hua-Jian Xu, Yao Fu. Na-MnOx catalyzed aerobic oxidative cleavage of biomass-derived 1,2-diols to synthesis medium-chain furanic chemicals. Green Energy&Environment, 2022, 7(5): 957-964. doi: 10.1016/j.gee.2020.12.007

Na-MnOx catalyzed aerobic oxidative cleavage of biomass-derived 1,2-diols to synthesis medium-chain furanic chemicals

doi: 10.1016/j.gee.2020.12.007
  • Medium-chain furanic chemicals have outstanding practical potential, especially in the application of pharmaceuticals and polymers. Herein, we describe an eco-friendly and efficient heterogeneous sodium-doped porous sodium manganese oxide catalyst (Na-MnOx) for oxidative cleavage of furanic 1,2-diols into medium-chain furanic aldehyde compounds. Subsequently, various high value-added chemicals (diacids and esters, diols, hydroxy acids, acrylics) were synthesized based on the widely applicable and highly selective catalytic approaches. The Na-MnOx was prepared by the coprecipitation method and characterized by XRD, SEM, XPS and FT-IR, and TGA. XPS revealed that Mn species existed in the mixed oxidation states MnII, MnIII and MnIV. When NaOH concentration up to 1.8 mol L-1 during the preparation process of the catalyst, the ratio of Mn4+ in the catalyst was the highest, and the yield of product (Furan-2-acrolein) in the model reaction is also optimal. Overall, this protocol developed a novel and general route for the preparation of medium-chain furanic compounds utilizing cellulose-derived platform molecules.

     

  • • Na-MnOx was proposed for oxidative cleavage of furanic 1,2-diols. • Various Medium-chain furanic chemicals were synthesized. • The catalyst with higher proportion of Mn4+ exhibited the best performance. • The catalyst showed excellent recycling performance.
  • loading
  • [1]
    H. Olcay, A. V. Subrahmanyam, R. Xing, J. Lajoie, J. A. Dumesic, G. W. Huber, Energ. Environ. Sci. 6 (2013) 205-216
    [2]
    A. Farran, C. Cai, M. Sandoval, Y. Xu, J. Liu, M. J. Hernaiz, R. J. Linhardt, Chem. Rev. 115 (2015) 6811-6853
    [3]
    J. P. Lange, E. van der Heide, J. van Buijtenen, R. Price, ChemSusChem 5 (2012) 150-166
    [4]
    N. Li, G. A. Tompsett, G. W. Huber, ChemSusChem 3 (2010) 1154-1157
    [5]
    Y. B. Huang, Z. Yang, J. J. Dai, Q. X. Guo, Y. Fu, RSC. Adv. 2 (2012) 11211-11214
    [6]
    B. Liu, Z. Zhang, ChemSusChem 9 (2016) 2015-2036
    [7]
    X. Li, P. Jia, T. Wang, ACS Catal. 6 (2016) 7621-7640
    [8]
    K. Zhang, X. L. Li, S. Y. Chen, H. J. Xu, J. Deng, Y. Fu, ChemSusChem 11 (2018) 726-734
    [9]
    X. H. Yang, X. M. Xiang, H. M. Chen, H. Y. Zheng, Y. W. Li, Y. L. Zhu, ChemCatChem 9 (2017) 3023-3030
    [10]
    J. Xu, N. Li, X. Yang, G. Li, A. Wang, Y. Cong, X. Wang, ACS Catal. 7 (2017) 5880-5886
    [11]
    J. Dai, X. Fu, L. Zhu, J. Tang, X. Guo, C. Hu, ChemCatChem 8 (2016) 1379-1385
    [12]
    J. J. Bozell, G. R. Petersen, Green Chem. 12 (2010) 539-554
    [13]
    A. Ranoux, K. Djanashvili, I. W. C. E. Arends, U. Hanefeld, ACS Catal. 3 (2013) 760-763
    [14]
    J. Lewkowski, Arkivoc 2 (2001)17-54
    [15]
    N. K. Gupta, S. Nishimura, A. Takagaki, K. Ebitani, Green Chem. 13 (2011) 824-827
    [16]
    J. Zhu, J. Cai, W. Xie, P.-H. Chen, M. Gazzano, M. Scandola, R. A. Gross, Macromolecules 46 (2013) 796-804
    [17]
    B. S. Wu, Y. T. Xu, Z. Y. Bu, L. B. Wu, B. G. Li, P. Dubois, Polymer 55 (2014) 3648-3655
    [18]
    X.-L. Li, K. Zhang, J.-L. Jiang, R. Zhu, W.-P. Wu, J. Deng, Y. Fu, Green Chem. 20 (2018) 362-368
    [19]
    N. Poulopoulou,N. Kasmi, D. N. Bikiaris, D. G. Papageorgiou, G. Floudas, G. Z. Papageorgiou, Macromol. Mater. Eng. 303 (2018) 1800153
    [20]
    D. Zhang, M.-J. Dumont, J. Polym. Sci. Part A Polym. Chem. 55 (2017) 1478-1492
    [21]
    K. Kan, M. Akashi, H. Ajiro, ACS Appl. Polym. Mater. 1 (2018) 267-274
    [22]
    N. Miyagawa, T. Suzuki, K. Okano, T. Matsumoto, T. Nishino, A. Mori, J. Polym. Sci. Pol. Chem. 56 (2018) 1516-1519
    [23]
    A. J. J. E. Eerhart, A. P. C. Faaij, M. K. Patel, Energy Environ. Sci. 5 (2012) 6407-6422
    [24]
    J. C. Morales-Huerta, A. M. de Ilarduya, S. Munoz-Guerra, Polymer 87 (2016) 148-158
    [25]
    S. K. Burgess, D. S. Mikkilineni, D. B. Yu, D. J. Kim, C. R. Mubarak, R. M. Kriegel, W. J. Koros, Polymer 55 (2014) 6861-6869
    [26]
    S. K. Burgess, R. M. Kriegel, W. J. Koros, Macromolecules 48 (2015) 2184-2193
    [27]
    G. Cecchin, E. Garagnani, US Patent, US6610785B1, 2003.
    [28]
    D. Tamarkin, D. Friedman, M.Eini, A. Besonov, US Patent, US7820145B2, 2010.
    [29]
    N. Kagawa, Y. Sasaki, H. Kojima, M. Toyota, Tetrahedron Lett. 51 (2010) 482-484
    [30]
    M. Kirihara, K. Yoshida, T. Noguchi, S. Naito, N. Matsumoto, Y. Ema, M. Torii, Y. Ishizuka, I. Souta, Tetrahedron Lett. 51 (2010) 3619-3622
    [31]
    L. Ning, S. Liao, X. Liu, P. Guo, Z. Zhang, H. Zhang, X. Tong, J. Catal. 364 (2018) 1-13
    [32]
    X. Tong, L. Yu, X. Luo, X. Zhuang, S. Liao, S. Xue, Catal. Today 298 (2017) 175-180
    [33]
    M. Gao, J. J. Meng, H. Lv, X. Zhang, Angew. Chem., Int. Ed. 127 (2015) 1905-1907
    [34]
    H. Zhu, Y. Zhang, X. Yang, H. Liu, X. Zhang, J. Yao, Ind. Eng. Chem. Res. 54 (2015) 2825-2829
    [35]
    F. Napoly, L. Jean-Gerard, C. Goux-Henry, M. Draye, B. Andrioletti, Eur. J. Org. Chem. 4 (2014) 781-787
    [36]
    A. Behr, N. Tenhumberg, A. Wintzer, RSC Adv. 3 (2013)172-180
    [37]
    P. T. Anastas, T. C. Williamson, D. Hjeresen, J. J. Breen, Environ. Sci. Technol. 33 (1999) 116A-119A
    [38]
    G. D. Du, L. K. Woo, J. Porphyr. Phthalocya. 9 (2005) 206-213
    [39]
    S. Riano, D. Fernandez, L. Fadini, Catal. Commun. 9 (2008) 1282-1285
    [40]
    C. Klein-Koerkamp, R. Granet, R. Zerrouki, N. Villandier, F. Jerome, J. Barrault, P. Krausz, Carbohydr. Polym. 78 (2009) 938-944
    [41]
    C. F. Zhao, C. A. Sojdak, W. Myint, D. Seidel, J. Am. Chem. Soc. 139 (2017) 10224-10227
    [42]
    V. Escande, C. H. Lam, P. Coish, P. T. Anastas, Angew. Chem., Int. Ed. 56 (2017) 9561-9565
    [43]
    P. Manjunathan, R. Ravishankar, G. V. Shanbhag, ChemCatChem 8 (2016) 631-639
    [44]
    A. R. Gandhe, J. S. Rebello, J. L. Figueiredo, J. B. Fernandes, Appl. Catal., B 72 (2007) 129-135
    [45]
    W. Luo, L. Sun, Y. Yang, Y. Chen, Z. Zhou, J. Liu, F, Catal. Sci. Technol. 8 (2018) 6468-6477
    [46]
    E. S. Ilton, J. E. Post, P. J. Heaney, F. T. Ling, S. N. Kerisit, Appl. Surf. Sci. 366 (2016) 475-485
    [47]
    V. Escande, C. H. Lam, C. Grison, P. T. Anastas, ACS Sustain. Chem. Eng. 5 (2017) 3214-3222
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (115) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return