Volume 6 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Yongyong Cao, JinYan Zhao, Xing Zhong, Guilin Zhuang, Shengwei Deng, Zhongzhe Wei, Zihao Yao, Jianguo Wang. Building highly active hybrid double-atom sites in C2N for enhanced electrocatalytic hydrogen peroxide synthesis. Green Energy&Environment, 2021, 6(6): 846-857. doi: 10.1016/j.gee.2020.12.006
Citation: Yongyong Cao, JinYan Zhao, Xing Zhong, Guilin Zhuang, Shengwei Deng, Zhongzhe Wei, Zihao Yao, Jianguo Wang. Building highly active hybrid double-atom sites in C2N for enhanced electrocatalytic hydrogen peroxide synthesis. Green Energy&Environment, 2021, 6(6): 846-857. doi: 10.1016/j.gee.2020.12.006

Building highly active hybrid double-atom sites in C2N for enhanced electrocatalytic hydrogen peroxide synthesis

doi: 10.1016/j.gee.2020.12.006
  • Two-electron (2e-) oxygen reduction reaction (ORR) shows great promise for on-site electrochemical synthesis of hydrogen peroxide (H2O2). However, it is still a great challenge to design efficient electrocatalysts for H2O2 synthesis. To address this issue, the logical design of the active site by controlling the geometric and electronic structures is urgently desired. Therefore, using density functional theory (DFT) computations, two kinds of hybrid double-atom supported on C2N nanosheet (RuCu@C2N and PdCu@C2N) are screened out and their H2O2 performances are predicted. PdCu@C2N exhibits higher activity for H2O2 synthesis with a lower overpotential of 0.12 V than RuCu@C2N (0.59 V), Ru3Cu(110) facet (0.60 V), and PdCu(110) facet (0.54 V). In aqueous phase, the adsorbed O2 is further stabilized with bulk H2O and the thermodynamic rate-determining step of 2e- ORR change. The activation barrier on PdCu@C2N is 0.43 eV lower than the one on RuCu@C2N with 0.68 eV. PdCu@C2N is near the top of 2e- ORR volcano plot, and exhibits high selectivity of H2O2. This work provides guidelines for designing highly effective hybrid double-atom electrocatalysts (HDACs) for H2O2 synthesis.

     

  • loading
  • [1]
    S. Yang, A.V. Casadevall, L. Arnarson, L. Silvioli, V. Colic, R. Frydendal, J. Rossmeisl, I. Chorkendorff, I.E.L. Stephens, ACS Catal. 8(2018) 4064-4081.
    [2]
    S.C. Perry, D. Pangotra, L. Vieira, L.I. Csepei, V. Sieber, L. Wang, C. Ponce de Leon, F.C. Walsh, Nat. Rev. Chem. 3(2019) 442-458.
    [3]
    R. Ma, L. Wang, H. Wang, Z. Liu, M. Xing, L. Zhu, X. Meng, F.S. Xiao, Appl. Catal. B Environ. 244(2019) 594-603.
    [4]
    B. Puertolas, A.K. Hill, T. Garcia, B. Solsona, L.T. Murciano, Catal. Today 248(2015) 115-127.
    [5]
    R. Hage, A. Lienke, Angew. Chem. Int. Ed. 45(2005) 206-222.
    [6]
    I.S. Enric Brillas, M.A. Oturan, Chem. Rev. 109(2009) 6570-6631.
    [7]
    Y. Yi, L. Wang, G. Li, H. Guo, Catal. Sci. Technol. 6(2016) 1593-1610.
    [8]
    J.K. Edwards, Freakley, S.J. Carley, A.F. Kiely, C.J. Hutchings, J. Graham, Acc. Chem. Res. 47(2014) 845-854.
    [9]
    B.P. Giacomo, M. Lari, M. Shahrokhi, N. Lopez, J.P. Ramrez, Angew. Chem. Int. Ed. 128(2016) 1-6.
    [10]
    Y.X. Chuan Xia, P. Zhu, L. Fan, H.T. Wang, Science 336(2019) 226-231.
    [11]
    Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 10(2011) 780-786.
    [12]
    C. Zhang, J. Sha, H. Fei, M. Liu, S. Yazdi, J. Zhang, Q. Zhong, X. Zou, N. Zhao, H. Yu, Z. Jiang, E. Ringe, B.I. Yakobson, J. Dong, D. Chen, J.M. Tour, ACS Nano 11(2017) 6930-6941.
    [13]
    K. Jiang, S. Back, A.J. Akey, C. Xia, Y. Hu, W. Liang, D. Schaak, E. Stavitski, J.K. Nørskov, S. Siahrostami, H. Wang, Nat. Commun. 10(2019) 3997-4008.
    [14]
    C.H. Choi, H.C. Kwon, S. Yook, H. Shin, H. Kim, M. Choi, J. Phys. Chem. C 118(2014) 30063-30070.
    [15]
    S. Siahrostami, A.V. Casadevall, M. Karamad, D. Deiana, P. Malacrida, B. Wickman, M.E. Escribano, E.A. Paoli, R. Frydendal, T.W. Hansen, I. Chorkendorff, I.E. Stephens, J. Rossmeisl, Nat. Mater. 12(2013) 1137-1143.
    [16]
    J. Mahmood, F. Li, C. Kim, H.J. Choi, O. Gwon, S.M. Jung, J.M. Seo, S.J. Cho, Y.W. Ju, H.Y. Jeong, G. Kim, J.B. Baek, Nano Energy 44(2018) 304-310.
    [17]
    Q.H. Simon, J. Freakley, Jonathan H. Harrhy, L. Lu, D.A. Crole, E.N.N. David, J. Morgan, J.K. Edwards, A.F. Carley, C.J.K. Albina, Y. Borisevich, G.J. Hutchings, Science 351(2016) 965-967.
    [18]
    P. Tian, F. Xuan, D. Ding, Y. Sun, X. Xu, W. Li, R. Si, J. Xu, Y.F. Han, J. Catal. 385(2020) 21-29.
    [19]
    M. Nugraha, M.C. Tsai, J. Rick, W.N. Su, H.L. Chou, B.J. Hwang, Appl. Catal. A:Gen. 547(2017) 69-74.
    [20]
    D.W. Flaherty, ACS Catal. 8(2018) 1520-1527.
    [21]
    X. Song, K. Sun, X. Hao, H.Y. Su, X. Ma, Y. Xu, J. Phys. Chem. C 123(2019) 26324-26337.
    [22]
    F. Wang, C. Xia, S.P. de Visser, Y. Wang, J. Am. Chem. Soc. 141(2019) 901-910.
    [23]
    Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov, T.F. Jaramillo, Science 355(2017) 4998.
    [24]
    A.V. Casadevall, D. Deiana, M. Karamad, S. Siahrostami, P. Malacrida, T.W. Hansen, J. Rossmeisl, I. Chorkendorff, I.E. Stephens, Nano Lett. 14(2014) 1603-1608.
    [25]
    H. Xu, D. Cheng, Y. Gao, ACS Catal. 7(2017) 2164-2170.
    [26]
    B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 3(2011) 634-641.
    [27]
    J.S. Jirkovsky, I. Panas, E. Ahlberg, M. Halasa, S. Romani, D.J. Schiffrin, J. Am. Chem. Soc. 133(2011) 19432-19441.
    [28]
    J. Gao, H.B. Yang, X. Huang, S.F. Hung, W. Cai, C. Jia, S. Miao, H.M. Chen, X. Yang, Y. Huang, T. Zhang, B. Liu, Chem 6(2020) 658-674.
    [29]
    X. Guo, S. Lin, J. Gu, S. Zhang, Z. Chen, S. Huang, ACS Catal. 9(2019) 11042-11054.
    [30]
    Z. F Shen, Q. Xia, Y.G. Li, C.C. Yin, Z.G. Ge, X. Li, Y.G. Wang, J. CO2 Util. 39(2020) 101176.
    [31]
    Y. Wang, T. Li, Y. Yao, X. Li, X. Bai, C. Yin, N. Williams, S. Kang, L. Cui, L. Hu, Adv. Energy Mater. 8(2018) 1703136.
    [32]
    H.W. Kim, M.B. Ross, N. Kornienko, L. Zhang, J. Guo, P. Yang, B.D. McCloskey, Nat. Catal. 1(2018) 282-290.
    [33]
    S. Chen, Z. Chen, S. Siahrostami, T.R. Kim, D. Nordlund, D. Sokaras, S. Nowak, J.W.F. To, D. Higgins, R. Sinclair, J.K. Nørskov, T.F. Jaramillo, Z. Bao, ACS Sustain. Chem. Eng. 6(2017) 311-317.
    [34]
    Z. Lu, G. Chen, S. Siahrostami, Z. Chen, K. Liu, J. Xie, L. Liao, T. Wu, D. Lin, Y. Liu, T.F. Jaramillo, J.K. Nørskov, Y. Cui, Nat. Catal. 1(2018) 156-162.
    [35]
    J. Mahmood, E.K. Lee, M. Jung, D. Shin, I.Y. Jeon, S.M. Jung, H.J. Choi, J.M. Seo, S.Y. Bae, S.D. Sohn, N. Park, J.H. Oh, H.J. Shin, J.B. Baek, Nat. Commun. 6(2015) 6486.
    [36]
    X. Li, W. Zhong, P. Cui, J. Li, J. Jiang, J. Phys. Chem. Lett. 7(2016) 1750-1755.
    [37]
    Y. Cao, Y. Gao, H. Zhou, X. Chen, H. Hu, S. Deng, X. Zhong, G. Zhuang, J. Wang, Adv. Theory Simul. 1(2018) 1800018.
    [38]
    Y. Cao, C. Zhao, Q. Fang, X. Zhong, G. Zhuang, S. Deng, Z. Wei, Z. Yao, J. Wang, J. Mater. Chem. A 8(2020) 2672-2683.
    [39]
    T.X. Cameron, J. Bodenschatz, X.H. Zhang, R.B. Getman, Phys. Chem. Chem. Phys. 21(2019) 9895-9940.
    [40]
    H. Cao, G.J. Xia, J.W. Chen, H.M. Yan, Z. Huang, Y.G. Wang, J. Phys. Chem. C 124(2020) 7287-7294.
    [41]
    Q. Cai, J.A. Lopez-Ruiz, A.R. Cooper, J.G. Wang, K.O. Albrecht, D. Mei, ACS Catal. 8(2017) 488-502.
    [42]
    J.F.G. Kresse, Comput. Mater. Sci. 6(1996) 15-50.
    [43]
    K.B. John, P. Perdew, M. Ernzerhof, Phys. Rev. Lett. 77(1996) 3865-3868.
    [44]
    P.E. Blochl, Phys. Rev. B 50(1994) 17953.
    [45]
    D.J.G. Kresse, Phys. Rev. B 59(1999) 1758.
    [46]
    S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132(2010) 154104.
    [47]
    R.A. Evarestov, V.P. Smirnov, Phys. Rev. B 70(2004) 233101.
    [48]
    G. Henkelman, B.P. Uberuaga, H. Jonsson, J. Chem. Phys. 113(2000) 9901-9904.
    [49]
    D.W. Ma, Q. Wang, X. Yan, X. Zhang, C. He, D. Zhou, Y. Tang, Z. Lu, Z. Yang, Carbon 105(2016) 463-473.
    [50]
    Y. Cao, S. Deng, Q. Fang, X. Sun, C. Zhao, J. Zheng, Y. Gao, H. Zhuo, Y. Li, Z. Yao, Z. Wei, X. Zhong, G. Zhuang, J. Wang, Nanotechnology 30(2019) 335403.
    [51]
    S. Noss, J. Chem. Phys. 81(1984) 511-519.
    [52]
    W.G. Hoover, Phys. Rev. A, Gen. Phys. 31(1985) 1695-1697.
    [53]
    Z.D. Zheng, X.C. Wang, W.B. Mi, Carbon 109(2016) 764-770.
    [54]
    B.L. He, J.S. Shen, Z.X. Tian, Phys. Chem. Chem. Phys. 18(2016) 24261-24269.
    [55]
    J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 152(2005) 23.
    [56]
    J.R.J.K. Nørskov, A. Logadottir, L. Lindqvist, J. Phys. Chem. B 108(2004) 17886-178992.
    [57]
    Y. Cao, G. Zhou, X. Chen, Q. Qiao, C. Zhao, X. Sun, X. Zhong, G. Zhuang, S. Deng, Z. Wei, Z. Yao, L. Huang, J. Wang, J. Mater. Chem. A 8(2020) 124-137.
    [58]
    F. He, H. Li, Y. Ding, K. Li, Y. Wang, Z. Wu, Carbon 130(2018) 636-644.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (340) PDF downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return