Volume 7 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
Revanasiddappa Manjunatha, Li Dong, Zibo Zhai, Jianyi Wang, Qianru Fu, Wei Yan, Jiujun Zhang. Pd nanocluster-decorated CoFe composite supported on nitrogen carbon nanotubes as a high-performance trifunctional electrocatalyst. Green Energy&Environment, 2022, 7(5): 933-947. doi: 10.1016/j.gee.2020.12.005
Citation: Revanasiddappa Manjunatha, Li Dong, Zibo Zhai, Jianyi Wang, Qianru Fu, Wei Yan, Jiujun Zhang. Pd nanocluster-decorated CoFe composite supported on nitrogen carbon nanotubes as a high-performance trifunctional electrocatalyst. Green Energy&Environment, 2022, 7(5): 933-947. doi: 10.1016/j.gee.2020.12.005

Pd nanocluster-decorated CoFe composite supported on nitrogen carbon nanotubes as a high-performance trifunctional electrocatalyst

doi: 10.1016/j.gee.2020.12.005
  • Rational design and synthesis of low-cost trifunctional electrocatalysts with improved stability and superior electrocatalytic activity for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) are highly desirable but remain as the bottlenecks at the current state of technology. In this paper, the cobalt-iron (Co–Fe) composite supported on nitrogen-doped carbon nanotubes (CoFe composite/NCNTs) is synthesized. The intrinsic OER and HER catalytic activities of this CoFe composite/NCNTs composite are significantly improved with palladium (Pd) nanocluster decoration [Pd-coated (CoFe composite/NCNTs)]. The as-prepared Pd-coated (CoFe composite/NCNTs) catalyst exhibits excellent trifunctional electrocatalytic activity and stability due to the interfacial coupling between Pd and (CoFe composite/NCNTs). This catalyst is successfully employed in the water electrolysis cell as both OER and HER electrode catalysts, flexible rechargeable Zn-air battery as the bifunctional ORR and OER electrode catalyst. The cell voltage of this catalyst-coated electrodes requires only 1.60 V to achieve 10 mA cm-2 current density for water electrolysis cell, which is comparable to and even better than that of Pt/C and Ir/C based cell. The primary Zn-air battery using this catalyst shows a constant high open-circuit voltage (OCV) of 1.47 V and a maximum power density of 261 mW cm-2 in the flooded mode configuration. Most importantly, a flexible Zn-air battery with this catalyst runs very smoothly without a change in voltage gap during flat, bending, and twisting positions.

     

  • loading
  • [1]
    B. Hua, M. Li, Y.F. Sun, Y.Q. Zhang, N. Yan, J. Chen, T. Thundat, J. Li, J.L. Luo, Nano Energy 32 (2017) 247-254
    [2]
    X. Fan, F. Kong, A. Kong, A. Chen, Z. Zhou, Y. Shan, ACS Appl. Mater. Interfaces 9 (2017) 32840-32850
    [3]
    Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C.L. Brown, X. Yao, Adv. Mater. 28 (2016) 9532-9538
    [4]
    H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu, L. Wang, W. Li, Z. Chen, X. Ji, J. Li, Energy Environ. Sci. 12 (2019) 322-333
    [5]
    Z. Fu, C. Ling, J. Wang, J. Mater. Chem. A (2020)
    [6]
    J. Li, Y. Kang, D. Liu, Z. Lei, P. Liu, ACS Appl. Mater. Interfaces 12 (2020) 5717-5729
    [7]
    X. Long, Z. Wang, S. Xiao, Y. An, S. Yang, Mater. Today 19 (2016) 213-226
    [8]
    M. Shao, R. Zhang, Z. Li, M. Wei, D.G. Evans, X. Duan, Chem. Commun. 51 (2015) 15880-15893
    [9]
    T. Bhowmik, M.K. Kundu, S. Barman, ACS Appl. Energy Mater. 1 (2018) 1200-1209
    [10]
    M. Gong, Y. Li, H. Wang, Y. Liang, J.Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, J. Am. Chem. Soc. 135 (2013) 8452-8455
    [11]
    H. Koshikawa, H. Murase, T. Hayashi, K. Nakajima, H. Mashiko, S. Shiraishi, Y. Tsuji, ACS Catal. 10 (2020) 1886-1893
    [12]
    F. Song, X. Hu, Nat. Commun. 5 (2014)
    [13]
    P.F. Liu, S. Yang, B. Zhang, H.G. Yang, ACS Appl. Mater. Interfaces 8 (2016) 34474-34481
    [14]
    Z. Guo, W. Ye, X. Fang, J. Wan, Y. Ye, Y. Dong, D. Cao, D. Yan, Inorg. Chem. Front. 6 (2019) 687-693
    [15]
    L. Feng, A. Li, Y. Li, J. Liu, L. Wang, L. Huang, Y. Wang, X. Ge, Chempluschem 82 (2017) 483-488
    [16]
    J. Guo, J. Sun, Y. Sun, Q. Liu, X. Zhang, Mater. Chem. Front. 3 (2019) 842-850
    [17]
    F. Song, X. Hu, J. Am. Chem. Soc. 136 (2014) 16481-16484
    [18]
    D. Lee, H.W. Kim, J.M. Kim, K.H. Kim, S.Y. Lee, ACS Appl. Mater. Interfaces 10 (2018) 22210-22217
    [19]
    H. Miao, B. Chen, S. Li, X. Wu, Q. Wang, C. Zhang, Z. Sun, H. Li, J. Power Sources 450 (2020) 227653
    [20]
    Y. Liu, K. Sun, X. Cui, B. Li, J. Jiang, ACS Sustain. Chem. Eng. 8 (2020) 2981-2989
    [21]
    Y. Xu, P. Deng, G. Chen, J. Chen, Y. Yan, K. Qi, H. Liu, B.Y. Xia, Adv. Funct. Mater. 30 (2020) 1-8
    [22]
    A. Samanta, C.R. Raj, J. Power Sources 455 (2020) 227975
    [23]
    K. Kordek, L. Jiang, K. Fan, Z. Zhu, L. Xu, M. Al-Mamun, Y. Dou, S. Chen, P. Liu, H. Yin, P. Rutkowski, H. Zhao, Adv. Energy Mater. 9 (2019) 1-9
    [24]
    L. Gao, M. Zhang, H. Zhang, Z. Zhang, J. Power Sources 450 (2020) 227577
    [25]
    Z. Zhang, H. Jin, J. Zhu, W. Li, C. Zhang, J. Zhao, F. Luo, Z. Sun, S. Mu, Carbon N. Y. 161 (2020) 502-509
    [26]
    M. Wu, G. Zhang, N. Chen, W. Chen, J. Qiao, S. Sun, Energy Storage Mater. 24 (2020) 272-280
    [27]
    Z. Li, L. Lv, X. Ao, J.G. Li, H. Sun, P. An, X. Xue, Y. Li, M. Liu, C. Wang, M. Liu, Appl. Catal. B Environ. 262 (2020)
    [28]
    M. Li, F. Luo, Q. Zhang, Z. Yang, Z. Xu, J. Catal. 381 (2020) 395-401
    [29]
    X. Zhong, W. Yi, Y. Qu, L. Zhang, H. Bai, Y. Zhu, J. Wan, S. Chen, M. Yang, L. Huang, M. Gu, H. Pan, B. Xu, Appl. Catal. B Environ. 260 (2020) 118188
    [30]
    Q. Feng, Z. Zhao, X.Z. Yuan, H. Li, H. Wang, Appl. Catal. B Environ. 260 (2020) 118176
    [31]
    C.C. Wang, K.Y. Hung, T.E. Ko, S. Hosseini, Y.Y. Li, J. Power Sources 452 (2020)
    [32]
    P. Tan, B. Chen, H. Xu, W. Cai, W. He, M. Ni, Appl. Catal. B Environ. 241 (2019) 104-112
    [33]
    Z. Wang, J. Ang, J. Liu, X.Y.D. Ma, J. Kong, Y. Zhang, T. Yan, X. Lu, Appl. Catal. B Environ. 263 (2020) 118344
    [34]
    H. Ji, M. Wang, S. Liu, H. Sun, J. Liu, T. Qian, C. Yan, Energy Storage Mater. 27 (2020) 226-231
    [35]
    Z. Li, W. Niu, Z. Yang, N. Zaman, W. Samarakoon, M. Wang, A. Kara, M. Lucero, M. V. Vyas, H. Cao, H. Zhou, G.E. Sterbinsky, Z. Feng, Y. Du, Y. Yang, Energy Environ. Sci. 13 (2020) 884-895
    [36]
    X. Shu, S. Chen, S. Chen, W. Pan, J. Zhang, Carbon N. Y. 157 (2020) 234-243
    [37]
    J. Han, X. Meng, L. Lu, Z.L. Wang, C. Sun, Nano Energy 72 (2020) 104669
    [38]
    M. Schmid, M. Willert-Porada, Electrochim. Acta 260 (2018) 246-253
    [39]
    Y. Da, F. Zhao, J. Shi, Z. Zhang, J. Electron. Mater. 49 (2020) 2479-2490
    [40]
    S. Clark, A.R. Mainar, E. Iruin, L.C. Colmenares, J.A. Blazquez, J.R. Tolchard, Z. Jusys, B. Horstmann, Adv. Energy Mater. 10 (2020)
    [41]
    T. Li, Y. Lu, S. Zhao, Z. Da Gao, Y.Y. Song, J. Mater. Chem. A 6 (2018) 3730-3737
    [42]
    L. Liang, M. Xiao, J. Zhu, J. Ge, C. Liu, W. Xing, J. Energy Chem. 28 (2019) 118-122
    [43]
    M. Xiao, J. Zhu, J. Ge, C. Liu, W. Xing, J. Power Sources 281 (2015) 34-43
    [44]
    V.G. Anju, R. Manjunatha, P.M. Austeria, S. Sampath, J. Mater. Chem. A 4 (2016) 5258-5264
    [45]
    Y. Zhang, Y. Liu, C. Fei, Z. Yang, Z. Lu, R. Xiong, D. Yin, J. Shi, J. Appl. Phys. 108 (2010) 1-7
    [46]
    M. Yeganeh Ghotbi, A. Javanmard, H. Soleimani, Sci. Rep. 8 (2018) 23-25
    [47]
    Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, K. Hashimoto, Nat. Commun. 4 (2013) 1-7
    [48]
    M. Zhao, Y. Cao, X. Liu, J. Deng, D. Li, H. Gu, Nanoscale Res. Lett. 9 (2014) 1-9
    [49]
    X. Wang, J. Chen, J. Zeng, Q. Wang, Z. Li, R. Qin, C. Wu, Z. Xie, L. Zheng, Nanoscale 9 (2017) 6643-6648
    [50]
    A.I. Boronin, E.M. Slavinskaya, I.G. Danilova, R. V. Gulyaev, Y.I. Amosov, P.A. Kuznetsov, I.A. Polukhina, S. V. Koscheev, V.I. Zaikovskii, A.S. Noskov, Catal. Today 144 (2009) 201-211
    [51]
    K. Gandha, K. Elkins, N. Poudyal, J. Ping Liu, J. Appl. Phys. 117 (2015) 2-6
    [52]
    X. Zhang, Y. Wang, S. Dong, M. Li, Electrochim. Acta 170 (2015) 248-255
    [53]
    X. Han, X. Wu, Y. Deng, J. Liu, J. Lu, C. Zhong, W. Hu, Adv. Energy Mater. 8 (2018) 1-12
    [54]
    J. Zhang, J. Liu, L. Xi, Y. Yu, N. Chen, S. Sun, W. Wang, K.M. Lange, B. Zhang, J. Am. Chem. Soc. 140 (2018) 3876-3879
    [55]
    N. Wang, L. Li, D. Zhao, X. Kang, Z. Tang, S. Chen, Small 13 (2017)
    [56]
    L. Yu, H. Zhou, J. Sun, F. Qin, D. Luo, L. Xie, F. Yu, J. Bao, Y. Li, Y. Yu, S. Chen, Z. Ren, Nano Energy 41 (2017) 327-336
    [57]
    Y. Hou, M.R. Lohe, J. Zhang, S. Liu, X. Zhuang, X. Feng, Energy Environ. Sci. 9 (2016) 478-483
    [58]
    Y. Li, M. Gong, Y. Liang, J. Feng, J.E. Kim, H. Wang, G. Hong, B. Zhang, H. Dai, Nat. Commun. 4 (2013) 1-7
    [59]
    B. Roy, K.J. Shebin, S. Sampath, J. Power Sources 450 (2020) 227661
    [60]
    Y. Ma, W. Zang, A. Sumboja, L. Mao, X. Liu, M. Tan, S.J. Pennycook, Z. Kou, Z. Liu, X. Li, J. Wang, Sustain. Energy Fuels (2020) 177-1753.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (204) PDF downloads(19) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return