Volume 6 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
Hong Li, Guanlun Sun, Dongyang Li, Li Xi, Peng Zhou, Xingang Li, Ji Zhang, Xin Gao. Molecular interaction mechanism in the separation of a binary azeotropic system by extractive distillation with ionic liquid. Green Energy&Environment, 2021, 6(3): 329-338. doi: 10.1016/j.gee.2020.11.025
Citation: Hong Li, Guanlun Sun, Dongyang Li, Li Xi, Peng Zhou, Xingang Li, Ji Zhang, Xin Gao. Molecular interaction mechanism in the separation of a binary azeotropic system by extractive distillation with ionic liquid. Green Energy&Environment, 2021, 6(3): 329-338. doi: 10.1016/j.gee.2020.11.025

Molecular interaction mechanism in the separation of a binary azeotropic system by extractive distillation with ionic liquid

doi: 10.1016/j.gee.2020.11.025
  • Ionic liquids (ILs) have shown excellent performance in the separation of binary azeotropes through extractive distillation [1]. But the role of the ionic liquid in azeotropic system is not well understood. In this paper, COSMO-RS model was applied to screen an appropriate IL to separate the binary azeotrope of ethyl acetate (EA) and ethanol and 1-octyl-3-methylimidazolium tetrafluoroborate ([OMIM][BF4]) was selected. The Quantum Mechanics (QM) calculations and molecular dynamics (MD) simulation are performed to study the interactions between the solvent molecules and [OMIM][BF4], in order to investigate the separation mechanism at the molecular level. The nature of the interactions is studied through the reduced density gradient (RDG) function and quantum theory of Atom in Molecule (QTAIM). Hydrogen bonds and van der Waals interactions are the key interactions in the complexes. The results of MD simulations indicate that the introduction of ILs has a prominent effect on the interaction between the solvent molecules, especially on reducing the number of hydrogen bonds among the solvent molecules. The radial distribution function (RDF) reveals that the interaction between the cation and solvent molecules will increase while the concentration of ILs increases. This paper provides important information for understanding the role of ILs in the separation of the azeotropic system, which is valuable to the development of new entrainers.

     

  • loading
  • [1]
    Z. Lei, C. Dai, J. Zhu, B. Chen, AIChE Journal 60 (2014) 3312-3329. doi: 10.1002/aic.14537
    [2]
    Z. Lei, B. Chen, Z. Ding, Special Distillation Processes, Elsevier Science, 2005.
    [3]
    V. Dohnal, E. Barankova, A. Blahut, Chem. Eng. J. 237 (2014) 199-208.
    [4]
    J.F. Wang, J.Q. Luo, S.C. Feng, H.R. Li, Y.H. Wan, X.P. Zhang, Green Energy Environ. 1 (2016) 43-61.
    [5]
    H.H. Zhang, M.Y. Zhu, W. Zhao, S. Li, G. Feng, Green Energy Environ. 3 (2018) 120-128. doi: 10.3390/rs10010120
    [6]
    M.L. Mu, J. Cheng, C.N. Dai, N. Liu, Z.G. Lei, Y.Z. Ding, J.J. Lu, Green Energy Environ. 4 (2019) 190-197.
    [7]
    Q. Li, W. Zhu, Y. Fu, H. Wang, L. Li, B. Wang, Journal of Chemical & Engineering Data 57 (2012) 1602-1606. doi: 10.1021/je2005402
    [8]
    X. Chen, F. Cai, X. Wu, C. Asumana, G. Yu, Journal of Chemical & Engineering Data 58 (2013) 1186-1192. doi: 10.1021/je301290c
    [9]
    H. Li, J. Zhang, D.Y. Li, X.G. Li, X. Gao, Mol. Simul. 43 (2017) 1125-1133. doi: 10.1080/08927022.2017.1336665
    [10]
    E. Boli, E. Voutsas, Chem. Eng. Sci. 219 (2020) 10.
    [11]
    A.V. Orchilles, P.J. Miguel, E. Vercher, A. Martinez-Andreu, J. Chem. Eng. Data 52 (2007) 141-147. doi: 10.1021/je0603170
    [12]
    Z. Song, X. Hu, Y. Zhou, T. Zhou, Z. Qi, K. Sundmacher, Aiche Journal 65 (2019).
    [13]
    W.X. Zhang, X.B. Liu, H.R. Zhang, S.H. Li, J.W. Yang, P.Z. Cui, Z.Y. Zhu, Y.X. Ma, Y.L. Wang, ACS Sustain. Chem. Eng. 7 (2019) 18093-18104. doi: 10.1021/acssuschemeng.9b05132
    [14]
    Y.J. Hu, F.H. Li, S.N. Wei, S.M. Jin, W.F. Shen, Sep. Purif. Technol. 242 (2020) 11.
    [15]
    Y. Xu, D.P. Meng, H.Y. Li, X.P. Yu, Z.Y. Zhu, Y.L. Wang, Y.X. Ma, J. Gao, ACS Sustain. Chem. Eng. 7 (2019) 19984-19992. doi: 10.1021/acssuschemeng.9b05629
    [16]
    P. Brault, W. Chamorro-Coral, S. Chuon, A. Caillard, J.M. Bauchire, S. Baranton, C. Coutanceau, E. Neyts, Front. Chem. Sci. Eng. 13 (2019) 324-329. doi: 10.1007/s11705-019-1792-5
    [17]
    H. Xu, Z. Han, D.J. Zhang, J.H. Zhan, ACS Appl. Mater. Interfaces 4 (2012) 6646-6653. doi: 10.1021/am301796w
    [18]
    W.X. Zhang, Z.R. Chen, Y.Y. Shen, G.X. Li, Y. Dai, J.G. Qi, Y.X. Ma, S. Yang, Y.L. Wang, ACS Sustain. Chem. Eng. 8 (2020) 8700-8712. doi: 10.1021/acssuschemeng.0c02234
    [19]
    F. Chen, L. Zhang, Z. Liu, G. Yu, Ind. Eng. Chem. Res. 59 (2020) 13271-13282. doi: 10.1021/acs.iecr.0c01292
    [20]
    Q.S. Li, J.G. Zhang, Z.G. Lei, J.Q. Zhu, J.J. Zhu, X.Q. Huang, Ind. Eng. Chem. Res. 48 (2009) 9006-9012. doi: 10.1021/ie8017127
    [21]
    A. Klamt, F. Eckert, Fluid Phase Equilib. 172 (2000) 43-72.
    [22]
    J.L. Han, C.N. Dai, G.Q. Yu, Z.G. Lei, Green Energy Environ. 3 (2018) 247-265.
    [23]
    A. Klamt, F. Eckert, M. Diedenhofen, Fluid Phase Equilib. 285 (2009) 15-18.
    [24]
    K. Nakajoh, M. Grabda, S. Oleszek-Kudlak, E. Shibata, F. Eckert, T. Nakamura, Journal of Molecular Structure-Theochem 895 (2009) 9-17.
    [25]
    A. Navas, J. Ortega, R. Vreekamp, E. Marrero, J. Palomar, Ind. Eng. Chem. Res. 48 (2009) 2678-2690. doi: 10.1021/ie8009878
    [26]
    A. Klamt, V. Jonas, T. Burger, J.C.W. Lohrenz, J. Phys. Chem. A 102 (1998) 5074-5085.
    [27]
    Y. Zhao, D.G. Truhlar, Theor. Chem. Acc. 120 (2008) 215-241. doi: 10.1007/s00214-007-0310-x
    [28]
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 09, RevisionA.02, Gaussian, Inc., Wallingford CT, 2009.
    [29]
    S.F. Boys, F.D. Bernardi, Mol. Phys. 19 (1970) 553-566. doi: 10.1080/00268977000101561
    [30]
    E.R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A.J. Cohen, W. Yang, J. Am. Chem. Soc. 132 (2010) 6498-6506. doi: 10.1021/ja100936w
    [31]
    R.F.W. Bader, Chem. Rev. 91 (1991) 893-928. doi: 10.1021/cr00005a013
    [32]
    T. Lu, F. Chen, J. Comput. Chem. 33 (2012) 580-592. doi: 10.1002/jcc.22885
    [33]
    W. Humphrey, A. Dalke, K. Schulten, Journal of molecular graphics 14 (1996) 33-38.
    [34]
    M.J. Abraham, T. Murtola, R. Schulz, S. Pall, J.C. Smith, B. Hess, E. Lindahl, SoftwareX 1-2 (2015) 19-25.
    [35]
    B. Hess, C. Kutzner, D. Van Der Spoel, E. Lindahl, J. Chem. Theory Comput. 4 (2008) 435-447. doi: 10.1021/ct700301q
    [36]
    W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 118 (1996) 11225-11236. doi: 10.1021/ja9621760
    [37]
    X. Li, J. Liu, K. Lin, Y. Zhang, Y. Zhang, R. Zheng, Q. Shi, Y. Guo, Z. Lu, J. Phys. Chem. C 123 (2019) 12975-12983.
    [38]
    J. Liu, X. Li, J. Hou, X. Li, Z. Lu, Langmuir 35 (2019) 7050-7059. doi: 10.1021/acs.langmuir.8b03847
    [39]
    J.G. Mcdaniel, E. Choi, C.Y. Son, J.R. Schmidt, A. Yethiraj, J. Phys. Chem. B 120 (2016) 231-243. doi: 10.1021/acs.jpcb.5b10065
    [40]
    K. Goloviznina, J.N.C. Lopes, M.C. Gomes, A.a.H. Padua, J. Chem. Theory Comput. 15 (2019) 5858-5871. doi: 10.1021/acs.jctc.9b00689
    [41]
    B. Doherty, O. Acevedo, Abstr. Pap. Am. Chem. Soc. 257 (2019) 1.
    [42]
    L.S. Dodda, I. Cabeza de vaca, J. Tirado-Rives, W.L. Jorgensen, Nucleic Acids Research 45 (2017) W331-W336. doi: 10.1093/nar/gkx312
    [43]
    W.L. Jorgensen, J. Tirado-Rives, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 6665-6670. doi: 10.1073/pnas.0408037102
    [44]
    L.S. Dodda, J.Z. Vilseck, J. Tirado-Rives, W.L. Jorgensen, The Journal of Physical Chemistry B 121 (2017) 3864-3870. doi: 10.1021/acs.jpcb.7b00272
    [45]
    S.V. Sambasivarao, O. Acevedo, J. Chem. Theory Comput. 5 (2009) 1038-1050. doi: 10.1021/ct900009a
    [46]
    B. Doherty, X. Zhong, S. Gathiaka, B. Li, O. Acevedo, J. Chem. Theory Comput. 13 (2017) 6131-6145. doi: 10.1021/acs.jctc.7b00520
    [47]
    L. Martinez, R. Andrade, E.G. Birgin, J.M. Martinez, Journal of Computational Chemistry 30 (2009) 2157-2164. doi: 10.1002/jcc.21224
    [48]
    G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys. 126 (2007) 7. doi: 10.1063/1.2408420
    [49]
    U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, The Journal of Chemical Physics 103 (1995) 8577-8593.
    [50]
    J. Zhu, H. Qi, B. Sun, H. Fan, X. Zhang, Journal of Molecular Liquids 319 (2020) 114159.
    [51]
    L. Cao, P.P. Liu, B.H. Wang, Q.S. Li, Fluid Phase Equilib. 372 (2014) 49-55.
    [52]
    Z.Y. Zhu, X.L. Geng, W. He, C. Chen, Y.L. Wang, J. Gao, Ind. Eng. Chem. Res. 57 (2018) 9656-9664. doi: 10.1021/acs.iecr.8b01355
    [53]
    K. Matsumoto, R. Hagiwara, J. Fluorine Chem. 128 (2007) 317-331.
    [54]
    A.R. Choudhury, N. Winterton, A. Steiner, A.I. Cooper, K.A. Johnson, J. Am. Chem. Soc. 127 (2005) 16792-16793. doi: 10.1021/ja055956u
    [55]
    J.D. Holbrey, W.M. Reichert, R.D. Rogers, Dalton Transactions (2004) 2267-2271. doi: 10.1039/B405901H
    [56]
    A. Aggarwal, N.L. Lancaster, A.R. Sethi, T. Welton, Green Chemistry 4 (2002) 517-520.
    [57]
    W.D. Arnold, E. Oldfield, J. Am. Chem. Soc. 122 (2000) 12835-12841.
    [58]
    H. Sun, S.J. Mumby, J.R. Maple, A.T. Hagler, J. Am. Chem. Soc. 116 (1994) 2978-2987. doi: 10.1021/ja00086a030
    [59]
    G.A. Jeffrey, G.A. Jeffrey, An introduction to hydrogen bonding, Oxford university press New York, 1997.
    [60]
    H. He, S. Zhang, X. Liu, J. Wang, X. Yao, X. Zhang, Fluid Phase Equilib. 360 (2013) 169-179.
    [61]
    K.H. Liu, M. Pu, H.Y. Li, B.H. Chen, Chinese Journal of Chemical Physics 18 (2005) 331-335.
    [62]
    S.S. Sheiko, F.C. Sun, A. Randall, D. Shirvanyants, M. Rubinstein, H. Lee, K. Matyjaszewski, Nature 440 (2006) 191-194. doi: 10.1038/nature04576
    [63]
    H. Fenniri, M. Packiarajan, K.L. Vidale, D.M. Sherman, K. Hallenga, K.V. Wood, J.G. Stowell, J. Am. Chem. Soc. 123 (2001) 3854-3855. doi: 10.1021/ja005886l
    [64]
    V.E.J. Berryman, J.J. Shephard, T. Ochiai, A.N. Price, P.L. Arnold, S. Parsons, N. Kaltsoyannis, Phys. Chem. Chem. Phys. 22 (2020) 16804-16812. doi: 10.1039/d0cp02947e
    [65]
    H. Li, P. Zhou, J. Zhang, D.Y. Li, X.G. Li, X. Gao, Journal of Molecular Liquids 251 (2018) 51-60.
    [66]
    P. Sillren, J. Bielecki, J. Mattsson, L. Borjesson, A. Matic, J. Chem. Phys. 136 (2012) 8. doi: 10.1063/1.3690137
    [67]
    D.Y. Li, Z.Q. Gao, N.K. Vasudevan, H. Li, X. Gao, X.G. Li, L. Xi, J. Phys. Chem. B 124 (2020) 3371-3386. doi: 10.1021/acs.jpcb.9b12013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (158) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return