Volume 6 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
Yanrong Liu, Zhengxing Dai, Zhibo Zhang, Shaojuan Zeng, Fangfang Li, Xiangping Zhang, Yi Nie, Lei Zhang, Suojiang Zhang, Xiaoyan Ji. Ionic liquids/deep eutectic solvents for CO2 capture: Reviewing and evaluating. Green Energy&Environment, 2021, 6(3): 314-328. doi: 10.1016/j.gee.2020.11.024
Citation: Yanrong Liu, Zhengxing Dai, Zhibo Zhang, Shaojuan Zeng, Fangfang Li, Xiangping Zhang, Yi Nie, Lei Zhang, Suojiang Zhang, Xiaoyan Ji. Ionic liquids/deep eutectic solvents for CO2 capture: Reviewing and evaluating. Green Energy&Environment, 2021, 6(3): 314-328. doi: 10.1016/j.gee.2020.11.024

Ionic liquids/deep eutectic solvents for CO2 capture: Reviewing and evaluating

doi: 10.1016/j.gee.2020.11.024
  • The CO2 solubilities (including CO2 Henry's constant) in physical- and chemical-based ILs/DESs and the COSMO-RS models describing these properties were comprehensively collected and summarized. The summarized results indicate that chemical-based ILs/DESs are superior to physical-based ILs/DESs for CO2 capture, especially those ILs have functionalized cation and anion, and superbase DESs; some of the superbase DESs have higher CO 2 solubilities than those of ILs; the best physical- and chemical-based ILs, as well as physical- and chemical-based DESs are [BMIM][BF4] (4.20 mol kg−1), [DETAH][Im] (11.91 mol kg−1), [L-Arg]-Gly 1:6 (4.92 mol kg−1) and TBD-EG 1:4 (12.90 mol kg−1), respectively. Besides the original COSMO-RS mainly providing qualitative predictions, six corrected COSMO-RS models have been proposed to improve the prediction performance based on the experimental data, but only one model is with universal parameters. The newly determined experimental results were further used to verify the perditions of original and corrected COSMO-RS models. The comparison indicates that the original COSMO-RS qualitatively predicts CO2 solubility for some but not all ILs/DESs, while the quantitative prediction is incapable at all. The original COSMO-RS is capable to predict CO2 Henry's constant qualitatively for both physical-based ILs and DESs, and quantitative prediction is only available for DESs. For the corrected COSMO-RS models, only the model with universal parameters provides quantitative predictions for CO2 solubility in physical-based DESs, while other corrected models always show large deviations (> 83%) compared with the experimental CO2 Henry's constants.

     

    The CO2 solubility (including Henry's constant) in ILs/DESs and the COSMO-RS models describing these properties were collected, and compared with the original and corrected COSMO-RS prediction results. Then the best CO2 solubility and the performance of COSMO-RS models were achieved.

  • loading
  • [1]
    W.Z. Sun, M,C. Wang, Y.Q. Zhang, W.L. Ding, F. Huo, L. Wei, H.Y. He, Green Energy Environ. 5 (2020) 183-194.
    [2]
    Y.Q. Zhang, H.Y. He, S.J. Zhang, M.H. Fan, ACS omega 3 (2018) 1823-1833. doi: 10.1021/acsomega.7b01805
    [3]
    Y.R. Liu, Y. Nie, X.M. Lu, X.P. Zhang, H.Y. He, F.J. Pan, L. Zhou, X. Liu, X.Y. Ji, S.J. Zhang, Green Chem. 21 (2019) 3499-3535. doi: 10.1039/c9gc00473d
    [4]
    B. Gurkan, B.F. Goodrich, E.M. Mindrup, L.E. Ficke, M. Massel, S. Seo, T.P. Senftle, H. Wu, M.F. Glaser, J.K. Shah, E.J. Maginn, J.F. Brennecke, W.F. Schneider, J. Phys. Chem. Lett. 1 (2010) 3494-3499. doi: 10.1021/jz101533k
    [5]
    F. Liu, Y. Shen, L. Shen, C. Sun, L. Chen, Q.L. Wang, S.J. Li, W. Li, Environ. Sci. Technol. 54 (2020) 3520-3529. doi: 10.1021/acs.est.9b06717
    [6]
    M.S. Chen, X.D. Wang, X.M Liu, Y.T. Wu, F. Zhang, Z.B. Zhang, J. Mol. Liq. 305 (2020) 112810.
    [7]
    S.J. Zeng, X.P. Zhang, L. Bai, X.C. Zhang, H. Wang, J.J. Wang, D. Bao, M.D. Li, X.Y. Liu, S.J. Zhang, Chem. Rev. 117 (2017) 9625-9673. doi: 10.1021/acs.chemrev.7b00072
    [8]
    M. Aghaie, N. Rezaei, S. Zendehboudi, Renew. Sust. Energ. Rev. 96 (2018) 502-525.
    [9]
    M.H. Nematollahi, P.J. Carvalho, Curr. Opin. Green Sust. 18 (2019) 25-30.
    [10]
    G.K. Cui, J.J. Wang, S.J. Zhang, Chem. Soc. Rev. 45 (2016) 4307-4339.
    [11]
    T. Makino, M. Kanakubo, J. Jpn. Petrol. Inst. 59 (2016) 109-117. doi: 10.1627/jpi.59.109
    [12]
    J.W. Wang, Z. Song, H.Y. Cheng, L.F. Chen, L.Y. Deng, Z.W. Qi, ACS Sustain. Chem. Eng. 6 (2018) 12025-12035. doi: 10.1021/acssuschemeng.8b02321
    [13]
    G. Garcia, S. Aparicio, R. Ullah, M. Atilhan, Energ. Fuel. 29 (2015) 2616-2644. doi: 10.1021/ef5028873
    [14]
    T. Aissaoui, I.M. Alnashef, U.A. Qureshi, Y. Benguerba, Rev. Chem. Eng. 33 (2017) 523-550.
    [15]
    Y.Y. Zhang, X.Y. Ji, X.H. Lu, Renew. Sust. Energ. Rev. 97 (2018) 436-455.
    [16]
    N. Ab Manan, C. Hardacre, J. Jacquemin, D.W. Rooney, T.G.A. Youngs, J. Chem. Eng. Data 54 (2009) 2005-2022. doi: 10.1021/je800857x
    [17]
    J. Palomar, M. Gonzalez-Miquel, A. Polo, F. Rodriguez, Ind. Eng. Chem. Res. 50 (2011) 3452-3463. doi: 10.1021/ie101572m
    [18]
    M. Gonzalez-Miquel, J. Palomar, S. Omar, F. Rodriguez, Ind. Eng. Chem. Res. 50 (2011) 5739-5748. doi: 10.1021/ie102450x
    [19]
    Y.Q. Zhang, H.Y. He, Y.R. Liu, Y.L. Wang, F. Huo, M.H. Fan, H. Adidharma, X.H. Li, S.J. Zhang, Green Chem. 21 (2019) 9-35. doi: 10.1039/c8gc02059k
    [20]
    Y.S. Zhao, R. Gani, R.M. Afzal, X.P. Zhang, S.J. Zhang, AIChE J. 63 (2017) 1353-1367. doi: 10.1002/aic.15618
    [21]
    Y.R. Liu, H. Yu, Y.H. Sun, S.J. Zeng, X.P. Zhang, Y. Nie, S.J. Zhang, X.Y. Ji, Front. Chem. 8 (2020) 82. doi: 10.1007/978-3-030-39746-3_10
    [22]
    J.L. Han, C.N. Dai, G.Q. Yu, Z.G. Lei, Green Energy Environ. 3 (2018) 247-265.
    [23]
    R. Farahipour, A. Mehrkesh, A.T. Karunanithi, Chem. Eng. Sci. 145 (2016) 126-132.
    [24]
    C. Moya, M. Gonzalez-Miquel, F. Rodriguez, A. Soto, H. Rodriguez, J. Palomar, Fluid Phase Equilibr. 450 (2017) 175-183.
    [25]
    Z. Song, X.T. Hu, H.Y. Wu, M.C. Mei, S. Linke, T. Zhou, Z.W. Qi, K. Sundmacher, ACS Sustain. Chem. Eng. 8 (2020) 8741-8751. doi: 10.1021/acssuschemeng.0c02490
    [26]
    K. Huang, H.-L. Peng, J. Chem. Eng. Data 62 (2017) 4108-4116. doi: 10.1021/acs.jced.7b00476
    [27]
    H.-K. Cho, J.E. Kim, J.S. Lim, Korean J. Chem. Eng. 34 (2017) 1475-1482. doi: 10.1007/s11814-017-0038-9
    [28]
    A.H. Jalili, M. Mehrabi, A.T. Zoghi, M. Shokouhi, S.A. Taheri, Fluid Phase Equilibr. 453 (2017) 1-12.
    [29]
    C.N. Dai, Z.G. Lei, B.H. Chen, AIChE J. 63 (2017) 1792-1798. doi: 10.1002/aic.15711
    [30]
    Z. Zhang, L. Zhang, L. He, W.-L. Yuan, D.G. Xu, G.-H. Tao, J. Phys. Chem. B 123 (2019) 6536-6542. doi: 10.1021/acs.jpcb.9b03210
    [31]
    Y.F. Jiang, M. Taheri, G.Q. Yu, J.Q. Zhu, Z.Q. Lei, Ind. Eng. Chem. Res. 58 (2019) 15588-15597. doi: 10.1021/acs.iecr.9b02540
    [32]
    Y.-M. Liu, Z.Q. Tian, F. Qu, Y. Zhou, Y. Liu, D.-J. Tao, ACS Sustain. Chem. Eng. 7 (2019) 11894-11900. doi: 10.1021/acssuschemeng.9b02540
    [33]
    P. Scovazzo, D. Camper, J. Kieft, J. Poshusta, C. Koval, R. Noble, Ind. Eng. Chem. Res. 43 (2004) 6855-6860.
    [34]
    T. Altamash, T.S. Haimour, M.A. Tarsad, B. Anaya, M.H. Ali, S. Aparicio, M. Atilhan, J. Chem. Eng. Data 62 (2017) 1310-1317. doi: 10.1021/acs.jced.6b00833
    [35]
    M.L. Alcantara, J.P. Santos, M. Loreno, P.I.S. Ferreira, M.L.L. Paredes, L. Cardozo-Filho, A.K. Silva, L.M. Liao, C.A.M. Pires, S. Mattedi, Fluid Phase Equilibr. 459 (2018) 30-43.
    [36]
    A.I. Akhmetshina, O.R. Gumerova, A.A. Atlaskin, A.N. Petukhov, T.S. Sazanova, N.R. Yanbikov, A.V. Nyuchev, E.N. Razov, I.V. Vorotyntsev, Sep. Purif. Technol. 176 (2017) 92-106.
    [37]
    M. Taheri, C.N. Dai, Z.G. Lei, AIChE J. 64 (2018) 2168-2180. doi: 10.1002/aic.16070
    [38]
    L.F. Lepre, L. Pison, L.J.A. Siqueira, R.A. Ando, M.F. Costa Gomes, Sep. Purif. Technol. 196 (2018) 10-19.
    [39]
    F.-F. Chen, K. Huang, J.-P. Fan, D.-J. Tao, AIChE J. 64 (2018) 632-639. doi: 10.1002/aic.15952
    [40]
    G.H. Jing, Y.H. Qian, X.B. Zhou, B.H. Lv, Z.M. Zhou, ACS Sustain. Chem. Eng. 6 (2018) 1182-1191. doi: 10.1021/acssuschemeng.7b03467
    [41]
    J.H. Wu, B.H. Lv, X.M. Wu, Z.M. Zhou, G.H. Jing, ACS Sustain. Chem. Eng. 7 (2019) 7312-7323. doi: 10.1021/acssuschemeng.9b00420
    [42]
    T.X. Zhao, X.M. Zhang, Z.H. Tu, Y.T. Wu, X.B. Hu, J. Mol. Liq. 268 (2018) 617-624.
    [43]
    F.F. Li, Y.G. Bai, S.J. Zeng, X.D. Liang, H. Wang, F. Huo, X.P. Zhang, Int. J. Greenh. Gas Con. 90 (2019) 102801.
    [44]
    M.S.R. Shahrom, C.D. Wilfred, D.R. MacFarlane, R. Vijayraghavan, F.K. Chong, J. Mol. Liq. 276 (2019) 644-652.
    [45]
    T. Song, G.M.A. Bonilla, O. Morales-Collazo, M.J. Lubben, J.F. Brennecke, Ind. Eng. Chem. Res. 58 (2019) 4997-5007. doi: 10.1021/acs.iecr.9b00251
    [46]
    Y.J. Huang, G.K. Cui, Y.L. Zhao, H.Y. Wang, Z.Y. Li, S. Dai, J.J. Wang, Angew. Chem. Int. Edit. 56 (2017) 13293-13297. doi: 10.1002/anie.201706280
    [47]
    Y.J. Huang, G.K. Cui, H.Y. Wang, Z.Y. Li, J.J. Wang, J. CO2 Util. 28 (2018) 299-305.
    [48]
    X.Y. Luo, X.Y. Lv, G.L. Shi, Q. Meng, H.R. Li, C.M. Wang, AIChE J. 65 (2019) 230-238. doi: 10.1002/aic.16420
    [49]
    X.-Y. Luo, X.-Y. Chen, R.-X. Qiu, B.-Y. Pei, Y. Wei, M. Hu, J.-Q. Lin, J.-Y. Zhang, G.-G. Luo, Dalton T. 48 (2019) 2300-2307. doi: 10.1039/c8dt04680h
    [50]
    R. Vijayaraghavan, T. Oncsik, B. Mitschke, D.R. Macfarlane, Sep. Purif. Technol. 196 (2018) 27-31.
    [51]
    Y.N. Meng, X.D. Wang, F. Zhang, Z.B. Zhang, Y.T. Wu, Energ. Fuel. 32 (2018) 8587-8593. doi: 10.1021/acs.energyfuels.8b01348
    [52]
    S. Sarmad, Y.J. Xie, J.-P. Mikkola, X.Y. Ji, New J. Chem. 41 (2017) 290-301. doi: 10.1039/C6NJ03140D
    [53]
    E. Ali, M.K. Hadj-Kali, S. Mulyono, I. Alnashef, Int. J. Greenh. Gas Con. 47 (2016) 342-350.
    [54]
    H.W. Ren, S.H. Lian, X. Wang, Y. Zhang, E.H. Duan, J. Clean. Prod. 193 (2018) 802-810.
    [55]
    L.F. Zubeir, D.J.G.P. Van Osch, M.A.A. Rocha, F. Banat, M.C. Kroon, J. Chem. Eng. Data 63 (2018) 913-919. doi: 10.1021/acs.jced.7b00534
    [56]
    Y.J. Xie, H.F. Dong, S.J. Zhang, X.H. Lu, X.Y. Ji, Green Energy Environ. 1 (2016) 195-200.
    [57]
    K. Mulia, S. Putri, E. Krisanti, Nasruddin, AIP Conference Proceedings 1823 (2017) 020022. doi: 10.1063/1.4978095
    [58]
    S.K. Shukla, J.P. Mikkola, Phys. Chem. Chem. Phys. 20 (2018) 24591-24601. doi: 10.1039/c8cp03724h
    [59]
    S. Garcia-Arguelles, M.L. Ferrer, M. Iglesias, F. Del Monte, M.C. Gutierrez, Materials 10 (2017) Doi: 10.3390/ma10070759.
    [60]
    B. Jiang, J.W. Ma, N. Yang, Z.H. Huang, N. Zhang, X.W. Tantai, Y.L. Sun, L.H. Zhang, Energ. Fuel. 33 (2019) 7569-7577. doi: 10.1021/acs.energyfuels.9b01361
    [61]
    Bhawna, A. Pandey, S. Pandey, ChemistrySelect 2 (2017) 11422-11430. doi: 10.1002/slct.201702259
    [62]
    K. Zhang, Y.C. Hou, Y.M. Wang, K. Wang, S.H. Ren, W.Z. Wu, Energ. Fuel. 32 (2018) 7727-7733. doi: 10.1021/acs.energyfuels.8b01129
    [63]
    Z.G. Lei, C.N. Dai, B.H. Chen, Chem. Rev. 114 (2013) 1289-1326.
    [64]
    D.W. Shang, X.Y. Liu, L. Bai, S.J. Zeng, Q.X. Xu, H.S. Gao, X.P. Zhang, Curr. Opin. Green Sust. 5 (2017) 74-81.
    [65]
    E. Ali, M.K. Hadj-Kali, I. Alnashef, Chem. Eng. Commun. 204 (2016) 205-215.
    [66]
    G. Alonso, P. Gamallo, R. Sayos, F. Llovell, J. Mol. Liq. 297 (2020) 111795.
    [67]
    M.K. Hadj-Kali, M. Althuluth, S. Mokraoui, I. Wazeer, E. Ali, D. Richon, Chem. Eng. Commun. 207 (2019) 1264-1277.
    [68]
    A. Ramalingam, T. Banerjee, Chem. Prod. Process Model. 6 (2011) 20.
    [69]
    M. Gonzalez-Miquel, M. Talreja, A.L. Ethier, K. Flack, J.R. Switzer, E.J. Biddinger, P. Pollet, J. Palomar, F. Rodriguez, C.A. Eckert, C.L. Liotta, Ind. Eng. Chem. Res. 51 (2012) 16066-16073. doi: 10.1021/ie302449c
    [70]
    J. Volkl, K. Muller, L. Mokrushina, W. Arlt, Chem. Eng. Technol. 35 (2012) 579-583. doi: 10.1002/ceat.201100319
    [71]
    Y.S. Sistla, A. Khanna, J. Chem. Eng. Data 56 (2011) 4045-4060. doi: 10.1021/je200486c
    [72]
    K.Z. Sumon, A. Henni, Fluid Phase Equilibr. 310 (2011) 39-55.
    [73]
    A. Kamgar, S. Mohsenpour, F. Esmaeilzadeh, J. Mol. Liq. 247 (2017) 70-74.
    [74]
    O. Alioui, Y. Benguerba, I.M. Alnashef, J. Mol. Liq. 307 (2020) 113005.
    [75]
    Y.-R. Liu, K. Thomsen, Y. Nie, S.-J. Zhang, A.S. Meyer, Green Chem. 18 (2016) 6246-6254. doi: 10.1039/C6GC01827K
    [76]
    X. Liu, Y. Nie, Y.R. Liu, S.J. Zhang, A.L. Skov, ACS Sustain. Chem. Eng. 6 (2018) 17314-17322. doi: 10.1021/acssuschemeng.8b04830
    [77]
    X.C. Zhang, Z.P. Liu, W.C. Wang, AIChE J. 54 (2008) 2717-2728. doi: 10.1002/aic.11573
    [78]
    X.Y. Liu, Y. Huang, Y.S. Zhao, R. Gani, X.P. Zhang, S.J. Zhang, Ind. Eng. Chem. Res. 55 (2016) 5931-5944. doi: 10.1021/acs.iecr.6b00029
    [79]
    D. Noferini, O. Holderer, H. Frielinghaus, Phys. Chem. Chem. Phys. 22 (2020) 9046-9052. doi: 10.1039/c9cp05200c
    [80]
    M. Torkzadeh, M. Moosavi, J. Phys. Chem. B 121 (2017) 7946-7962. doi: 10.1021/acs.jpcb.7b05008
    [81]
    U. Cerajewski, J. Trager, S. Henkel, A.H. Roos, M. Brehm, D. Hinderberger, Phys. Chem. Chem. Phys.. 20 (2018) 29591-29600. doi: 10.1039/c8cp04912b
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (445) PDF downloads(25) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return