Volume 6 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Xudong Zhao, Li-Zhen Fan, Zhen Zhou. Cationic potential: An effective descriptor for rational design of layered oxides for sodium-ion batteries. Green Energy&Environment, 2021, 6(4): 455-457. doi: 10.1016/j.gee.2020.11.022
Citation: Xudong Zhao, Li-Zhen Fan, Zhen Zhou. Cationic potential: An effective descriptor for rational design of layered oxides for sodium-ion batteries. Green Energy&Environment, 2021, 6(4): 455-457. doi: 10.1016/j.gee.2020.11.022

Cationic potential: An effective descriptor for rational design of layered oxides for sodium-ion batteries

doi: 10.1016/j.gee.2020.11.022
  • Sodium-ion batteries are very promising in large-scale energy storage. The exploration of Na layered oxides as cathode materials for Na ion batteries usually consumes much resource, while the performances of Na layered oxides are dominated by their crystal structures. Therefore, it is highly desired to predict the stacking mode of the target oxides in advance: whether O3-type with higher ordered structure and stability, or P2-type with more Na content. For this purpose density functional theory computations do not work. Very recently, Hu's group and international collaborators have proposed a cationic potential to provide a very timely, effective, and accurate criterion to predict the stacking mode of Na layered oxides (Science, 370 (2020) 708–711). Under the guidance of the cationic potential phase map, Na layered oxides could be rationally designed. Here we would like to highlight the progress that novel Na layered oxides could be obtained with the combination of large specific capacity, high power density and good cycling stability.

     

  • • Hu group proposed cationic potential for rational design of battery materials. • Such descriptor can efficiently predict stacking modes of Na layered oxides. • The effectiveness of cationic potential is recommended for applications.
  • loading
  • [1]
    V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 4(2011) 3243-3262.
    [2]
    S. Hu, A. Pillai, G. Liang, W. Pang, H. Wang, Q. Li, Z. Guo, Electrochem. Energy Rev. 2(2019) 277-311.
    [3]
    M. Han, E. Gonzalo, G. Singh, T. Rojo, Energy Environ. Sci. 8(2015) 81-102.
    [4]
    N. Yabuuchi, R. Hara, K. Kubota, J. Paulsen, S. Kumakura, S. Komaba, J. Mater. Chem. 40(2014) 16851-16855.
    [5]
    D. Kim, S. Kang, M. Slater, S. Rood, J. Vaughey, M. Balasubramanian, C. Johnson, Adv. Energy Mater. 1(2011) 333-336.
    [6]
    D. Buchhol, A. Moretti, R. Klopsch, S. Nowak, V. Siozios, M. Winter, S. Passerini, Chem. Mater. 25(2013) 142-148.
    [7]
    C. Zhao, M. Avdeev, L. Chen, Y.S. Hu, Angew. Chem. Int. Ed. 57(2018) 7056-7060.
    [8]
    C. Zhao, Q. Wang, Z. Yao, J. Wang, B. Sánchez-Lengeling, F. Ding, X. Qi, Y. Lu, X. Bai, B. Li, H. Li, A. Aspuru-Guzik, X. Huang, C. Delmas, M. Wagemaker, L. Chen, Y. Hu, Science 370(2020) 708-711.
    [9]
    J. Rouxel, J. Solid State Chem. 17(1976) 223-229.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (149) PDF downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return