Citation: | Xudong Zhao, Li-Zhen Fan, Zhen Zhou. Cationic potential: An effective descriptor for rational design of layered oxides for sodium-ion batteries. Green Energy&Environment, 2021, 6(4): 455-457. doi: 10.1016/j.gee.2020.11.022 |
Sodium-ion batteries are very promising in large-scale energy storage. The exploration of Na layered oxides as cathode materials for Na ion batteries usually consumes much resource, while the performances of Na layered oxides are dominated by their crystal structures. Therefore, it is highly desired to predict the stacking mode of the target oxides in advance: whether O3-type with higher ordered structure and stability, or P2-type with more Na content. For this purpose density functional theory computations do not work. Very recently, Hu's group and international collaborators have proposed a cationic potential to provide a very timely, effective, and accurate criterion to predict the stacking mode of Na layered oxides (Science, 370 (2020) 708–711). Under the guidance of the cationic potential phase map, Na layered oxides could be rationally designed. Here we would like to highlight the progress that novel Na layered oxides could be obtained with the combination of large specific capacity, high power density and good cycling stability.
[1] |
V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 4(2011) 3243-3262.
|
[2] |
S. Hu, A. Pillai, G. Liang, W. Pang, H. Wang, Q. Li, Z. Guo, Electrochem. Energy Rev. 2(2019) 277-311.
|
[3] |
M. Han, E. Gonzalo, G. Singh, T. Rojo, Energy Environ. Sci. 8(2015) 81-102.
|
[4] |
N. Yabuuchi, R. Hara, K. Kubota, J. Paulsen, S. Kumakura, S. Komaba, J. Mater. Chem. 40(2014) 16851-16855.
|
[5] |
D. Kim, S. Kang, M. Slater, S. Rood, J. Vaughey, M. Balasubramanian, C. Johnson, Adv. Energy Mater. 1(2011) 333-336.
|
[6] |
D. Buchhol, A. Moretti, R. Klopsch, S. Nowak, V. Siozios, M. Winter, S. Passerini, Chem. Mater. 25(2013) 142-148.
|
[7] |
C. Zhao, M. Avdeev, L. Chen, Y.S. Hu, Angew. Chem. Int. Ed. 57(2018) 7056-7060.
|
[8] |
C. Zhao, Q. Wang, Z. Yao, J. Wang, B. Sánchez-Lengeling, F. Ding, X. Qi, Y. Lu, X. Bai, B. Li, H. Li, A. Aspuru-Guzik, X. Huang, C. Delmas, M. Wagemaker, L. Chen, Y. Hu, Science 370(2020) 708-711.
|
[9] |
J. Rouxel, J. Solid State Chem. 17(1976) 223-229.
|
[1] | Yunxin Shi, Ziyang Guo, Changhong Wang, Mingze Gao, Xiaoting Lin, Hui Duan, Yonggang Wang, Xueliang Sun. Design of Multifunctional Interfaces on Ceramic Solid Electrolytes for High-Performance Lithium-Air Batteries. Green Energy&Environment. doi: 10.1016/j.gee.2024.02.010 |
[2] | Dan Lv, Liehao Wei, Cheng Wang, Mingyue Wang, Zhongchao Bai, Yameng Fan, Dongdong Wang, Nana Wang, Jian Yang. Novel Titanium Vanadate with Superior Na+ Transport Kinetics for Rapid Charging and Low-Temperature Sodium Ion Batteries. Green Energy&Environment. doi: 10.1016/j.gee.2024.03.005 |
[3] | Jingke Zhang, Hengxue Xiang, Zhiwei Cao, Shichao Wang, Meifang Zhu. Research Progress of Lignin-Derived Materials in Lithium/Sodium Ion Batteries. Green Energy&Environment. doi: 10.1016/j.gee.2024.05.001 |
[4] | Bin Ma, Lisheng Zhang, Wentao Wang, Hanqing Yu, Xianbin Yang, Siyan Chen, Huizhi Wang, Xinhua Liu. Application of deep learning for informatics aided design of electrode materials in metal-ion batteries. Green Energy&Environment, 2024, 9(5): 877-889. doi: 10.1016/j.gee.2022.10.002 |
[5] | Daping Qiu, Yanglong Hou. Carbon materials toward efficient potassium storage: Rational design, performance evaluation and potassium storage mechanism. Green Energy&Environment, 2023, 8(1): 115-140. doi: 10.1016/j.gee.2022.05.007 |
[6] | Sinian Yang, Hongxia Du, Yuting Li, Xiangsi Wu, Bensheng Xiao, Zhangxing He, Qiaobao Zhang, Xianwen Wu. Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries. Green Energy&Environment, 2023, 8(6): 1531-1552. doi: 10.1016/j.gee.2022.08.009 |
[7] | Huiqin Wang, Fengchu Zhang, Jing Xia, Fei Lu, Bo Zhou, Ding Yi, Xi Wang. Engineering electronic structures of titanium vacancies in Ti1-xO2 nanosheets enables enhanced Li-ion and Na-ion storage. Green Energy&Environment, 2022, 7(4): 734-741. doi: 10.1016/j.gee.2020.11.006 |
[8] | Jiexin Zhang, YangYang Lai, Peng Li, Yanxia Wang, Faping Zhong, Xiangming Feng, Weihua Chen, Jianjun Liu, Xinping Ai, Hanxi Yang, Yuliang Cao. Boosting rate and cycling performance of K-doped Na3V2(PO4)2F3 cathode for high-energy-density sodium-ion batteries. Green Energy&Environment, 2022, 7(6): 1253-1262. doi: 10.1016/j.gee.2021.01.001 |
[9] | Qiongguang Li, Yanhong Wang, Jing Yu, Menglei Yuan, Qiangqiang Tan, Ziyi Zhong, Fabing Su. High-performance Si-Containing anode materials in lithium-ion batteries: A superstructure of Si@Co-NC composite works effectively. Green Energy&Environment, 2022, 7(1): 116-129. doi: 10.1016/j.gee.2020.08.007 |
[10] | Xin Liu, Liwen Yang, Guobao Xu, Juexian Cao. Pomegranate-like porous NiCo2Se4 spheres with N-doped carbon as advanced anode materials for Li/Na-ion batteries. Green Energy&Environment, 2022, 7(3): 554-565. doi: 10.1016/j.gee.2020.08.012 |
[11] | Xiangqi Meng, Yaolin Xu, Hongbin Cao, Xiao Lin, Pengge Ning, Yi Zhang, Yaiza Gonzalez Garcia, Zhi Sun. Internal failure of anode materials for lithium batteries — A critical review. Green Energy&Environment, 2020, 5(1): 22-36. doi: 10.1016/j.gee.2019.10.003 |
[12] | Lei Liu, Lei Wang, Dahuan Liu, Qingyuan Yang, Chongli Zhong. High-throughput computational screening of Cu-MOFs with open metal sites for efficient C2H2/C2H4 separation. Green Energy&Environment, 2020, 5(3): 333-340. doi: 10.1016/j.gee.2020.03.002 |
[13] | Hiroyuki Usui, Yasuhiro Domi, Ryota Yamagami, Hiroki Sakaguchi. Degradation mechanism of tin phosphide as Na-ion battery negative electrode. Green Energy&Environment, 2019, 4(2): 121-126. doi: 10.1016/j.gee.2019.01.001 |
[14] | Weina Ren, Haifeng Zhang, Cao Guan, Chuanwei Cheng. SnS2 nanosheets arrays sandwiched by N-doped carbon and TiO2 for high-performance Na-ion storage. Green Energy&Environment, 2018, 3(1): 42-49. doi: 10.1016/j.gee.2017.09.005 |
[15] | Yajun Zhao, Tao Liu, Qiufan Shi, Qingchun Yang, Chunxiao Li, Dawei Zhang, Chaofeng Zhang. Perovskite oxides La0.4Sr0.6CoxMn1-xO3 (x = 0, 0.2, 0.4) as an effective electrocatalyst for lithium—air batteries. Green Energy&Environment, 2018, 3(1): 78-85. doi: 10.1016/j.gee.2017.12.001 |
[16] | Wangjia Tang, Jianbo Wu, Xiuli Wang, Xinhui Xia, Jiangping Tu. Integrated carbon nanospheres arrays as anode materials for boosted sodium ion storage. Green Energy&Environment, 2018, 3(1): 50-55. doi: 10.1016/j.gee.2017.08.001 |
[17] | Minman Tong, Youshi Lan, Qingyuan Yang, Chongli Zhong. High-throughput computational screening and design of nanoporous materials for methane storage and carbon dioxide capture. Green Energy&Environment, 2018, 3(2): 107-119. doi: 10.1016/j.gee.2017.09.004 |
[18] | Rujuan Zheng, Wenhui Wang, Yunkun Dai, Quanxin Ma, Yuanlong Liu, Deying Mu, Ruhong Li, Jie Ren, Changsong Dai. A closed-loop process for recycling LiNixCoyMn(1−x−y)O2 from mixed cathode materials of lithium-ion batteries. Green Energy&Environment, 2017, 2(1): 42-50. doi: 10.1016/j.gee.2016.11.010 |
[19] | Cheng-Gong Han, Chunyu Zhu, Yoshitaka Aoki, Hiroki Habazaki, Tomohiro Akiyama. MnO/N–C anode materials for lithium-ion batteries prepared by cotton-templated combustion synthesis. Green Energy&Environment, 2017, 2(4): 377-386. doi: 10.1016/j.gee.2017.08.004 |
[20] | Hu Zhao, Bao Qiu, Haocheng Guo, Kai Jia, Zhaoping Liu, Yonggao Xia. Characterization of Li-rich layered oxides by using transmission electron microscope. Green Energy&Environment, 2017, 2(3): 174-185. doi: 10.1016/j.gee.2017.05.005 |
1. | Zhao, Y., Zhang, Z., Zheng, Y. et al. Sodium-Ion Battery at Low Temperature: Challenges and Strategies. Nanomaterials, 2024, 14(19): 1604. doi:10.3390/nano14191604 | |
2. | Xu, J., Duan, L., Liao, J. et al. KVPO4F/carbon nanocomposite with highly accessible active sites and robust chemical bonds for advanced potassium-ion batteries. Green Energy and Environment, 2023, 8(5): 1469-1478. doi:10.1016/j.gee.2022.12.007 | |
3. | Gao, Y., Zhou, J., Qin, L. et al. Crystal plane induced in-situ electrochemical activation of manganese-based cathode enable long-term aqueous zinc-ion batteries. Green Energy and Environment, 2023, 8(5): 1429-1436. doi:10.1016/j.gee.2022.02.009 | |
4. | Zhao, S., Shi, Q., Qi, R. et al. NaTi2(PO4)3 modified O3-type NaNi1/3Fe1/3Mn1/3O2 as high rate and air stable cathode for sodium-ion batteries. Electrochimica Acta, 2023, 441: 141859. doi:10.1016/j.electacta.2023.141859 | |
5. | Lu, J., Zhang, J., Huang, Y. et al. Advances on layered transition-metal oxides for sodium-ion batteries: a mini review. Frontiers in Energy Research, 2023, 11: 1246327. doi:10.3389/fenrg.2023.1246327 | |
6. | Adamu, H., Abba, S.I., Anyin, P.B. et al. Artificial intelligence-navigated development of high-performance electrochemical energy storage systems through feature engineering of multiple descriptor families of materials. Energy Advances, 2023. doi:10.1039/d3ya00104k | |
7. | Cheng, W., Wan, B., Shen, J. et al. Quasi-two-dimensional topological Co3Sn2S2 composite toward high rate sodium ion storage. Chemical Engineering Journal, 2022, 443: 136420. doi:10.1016/j.cej.2022.136420 | |
8. | Liu, Y., Wang, D., Li, P. et al. The Relationship between Initial Coulombic Efficiency and Transition Metal Ion Redox in P2-Na0.85[Cu0.1FexMn1- x]O2Cathodes. Industrial and Engineering Chemistry Research, 2022, 61(31): 11494-11503. doi:10.1021/acs.iecr.2c01864 | |
9. | Gao, Z., Han, L., Gao, H. et al. Coupling core-shell Bi@Void@TiO2 heterostructures into carbon nanofibers for achieving fast potassium storage and long cycling stability. Journal of Materials Chemistry A, 2022, 10(24): 12908-12920. doi:10.1039/d2ta01833k | |
10. | Xue, L., Bao, S., Yan, L. et al. MgO-Coated Layered Cathode Oxide With Enhanced Stability for Sodium-Ion Batteries. Frontiers in Energy Research, 2022, 10: 847818. doi:10.3389/fenrg.2022.847818 |