Volume 7 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Wei Zhang, Jiajun Wang, Zewei Liu, Yibing Pi, Rong Tan. Visible light-driven oxidant-free dehydrogenation of alcohols in water using porous ultrathin g-C3N4 nanosheets. Green Energy&Environment, 2022, 7(4): 712-722. doi: 10.1016/j.gee.2020.11.019
Citation: Wei Zhang, Jiajun Wang, Zewei Liu, Yibing Pi, Rong Tan. Visible light-driven oxidant-free dehydrogenation of alcohols in water using porous ultrathin g-C3N4 nanosheets. Green Energy&Environment, 2022, 7(4): 712-722. doi: 10.1016/j.gee.2020.11.019

Visible light-driven oxidant-free dehydrogenation of alcohols in water using porous ultrathin g-C3N4 nanosheets

doi: 10.1016/j.gee.2020.11.019
  • Graphitic carbon nitride (g-C3N4) is a fascinating photocatalyst for solar energy utilization in photo-catalysis. Nevertheless, it often suffers from moderate photo-catalytic activity due to its low specific surface area and fast recombination rate of photogenerated electrons upon photo-excitation. Herein, we overcome the bottlenecks by constructing a porous g-C3N4 nanosheet ( PCNS ) through a simple thermal oxidation etching method. Benefited from its porous layer structure, the obtained PCNS exhibits large specific surface area, efficient separation of photogenerated charge carriers, as well as high exposure of active sites. As a result, it is robust and universal in visible light-driven dehydrogenation of alcohols in water under oxidant-free condition. Almost quantitative yields (> 99%) of various valuable carbonyl compounds were obtained over PCNS , while bulk g-C3N4 was far less efficient. Moreover, the photo-catalyst was highly stable and could be facilely recovered from the aqueous system for efficient reuse. The easy preparation and excellent performance made PCNS a promising and competitive photocatalyst for the solar applications.

     

  • These authors contributed equally to this work and should be considered co-first authors.
  • loading
  • [1]
    D.M. Schultz, T.P. Yoon, Science 343 (2014) 1239176
    [2]
    J. Kou, C. Lu, J. Wang, Y. Chen, Z. Xu, R.S. Varma, Chem. Rev. 117 (2017) 1445-1514
    [3]
    W. Huo, T. Cao, X. Liu, W. Xu, B. Dong, Y. Zhang, F. Dong, Green Energy Environ. 4 (2019) 270-279
    [4]
    H. Chen, S. He, M. Xu, M. Wei, D.G. Evans, X. Duan, ACS Catal. 7 (2017) 2735-2743
    [5]
    H. Fuse, H. Mitsunuma, M. Kanai, J. Am. Chem. Soc. 142 (2020) 4493-4499
    [6]
    Q. Ke, D. Yi, Y. Jin, F. Lu, B. Zhou, F. Zhan, Y. Yang, D. Gao, P. Yan, C. Wan, P. Cui, D. Golberg, J. Yao, X. Wang, ACS Sustainable Chem. Eng. 8 (2020) 5734-5741
    [7]
    L. Yao, J. Zhao, J. Lee, ACS Sustainable Chem. Eng. 5 (2017) 2056-2060
    [8]
    D. Tsukamoto, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, J. Am. Chem. Soc. 134 (2012) 6309-6315
    [9]
    H. Tada, T. Kiyonaga, S. Naya, Chem. Soc. Rev. 38 (2009) 1849-1858
    [10]
    A. Tanaka, K. Hashimoto, H. Kominami, J. Am. Chem. Soc. 134 (2012) 14526-14533
    [11]
    Y. Shiraishi, D. Tsukamoto, Y. Sugano, A. Shiro, S. Ichikawa, S. Tanaka, T. Hirai, ACS Catal. 2 (2012) 1984-1992
    [12]
    H. Jia, X. Zhu, R. Jiang, J. Wang, ACS Appl. Mater. Interfaces 9 (2017) 2560-2571
    [13]
    X. Zhu, C. Jin, X. Li, J. Liu, Z. Sun, C. Shi, X. Li, A. Zhu, ACS Catal. 7 (2017) 6514-6524
    [14]
    N.O. Balayeva, Z. Mamiyev, R. Dillert, N. Zheng, D.W. Bahnemann, ACS Catal. 10 (2020) 5542-5553
    [15]
    X. Wang, K. Maeda, X. Chen, K Takanabe, K. Domen, Y. Hou, X. Fu, M. Antonietti, J. Am. Chem. Soc. 131 (2009) 1680-1681
    [16]
    X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, J. Am. Chem. Soc. 135 (2013) 18-21
    [17]
    L. Li, J. Yi, X. Zhu, M. Zhou, S. Zhang, X. She, Z. Chen, H. Li, H. Xu, ACS Sustainable Chem. Eng. 8 (2020) 884-892
    [18]
    M. Mao, S. Zhao, Z. Chen, X She, J. Yi, K. Xia, H. Xu, M. He, H. Li, Green Energy Environ. 3 (2018) 229-238
    [19]
    F. Su, S.C. Mathew, G. Lipner, X. Fu, M. Antonietti, S. Blechert, X. Wang, J. Am. Chem. Soc. 132 (2010) 16299-16301
    [20]
    Y. Wang, L. Guo, Y. Zeng, H. Guo, S.Wan, M. Ou, S. Zhang, Q. Zhong, ACS Appl. Mater. Interfaces 11 (2019) 30673-30681
    [21]
    L. Fang, Y. Li, P. Liu, D. Wang, H. Zeng, X. Wang, H. Yang, ACS Sustainable Chem. Eng. 5 (2017) 2039-2043
    [22]
    W. Xing, W. Tu, Z. Han, Y. Hu, Q. Meng, G. Chen, ACS Energy Lett. 3 (2018) 514-519
    [23]
    J. Tian, R. Nin, Q. Liu, A.M. Asiri, A.O. Al-Youbi, X. Sun, ACS Appl. Mater. Interfaces 6 (2014) 1011-1017
    [24]
    X. Liu, P. Wang, H. Zhai, Q. Zhang, B. Huang, Z. Wang, Y. Liu, Y. Dai, X. Qin, X. Zhang, Appl. Catal. B:Environ. 232 (2018) 521-530
    [25]
    X. Qian, X. Meng, J. Sun, L. Jiang, Y. Wang, J. Zhang, X. Hu, M. Shalom, J. Zhu, ACS Appl. Mater. Interfaces 11 (2019) 27226-27232
    [26]
    Y. Zhou, W. Lv, B. Zhu, F. Tong, J. Pan, J. Bai, Q. Zhou, H. Qin, ACS Sustainable Chem. Eng. 7 (2019) 5801-5807
    [27]
    P. Niu, L. Zhang, G. Liu, H. Cheng, Adv. Funct. Mater. 22 (2012) 4763-4770
    [28]
    J. Xu, Z. Wang, Y. Zhu, ACS Appl. Mater. Interfaces 9 (2017) 27727-27735
    [29]
    X. Zhou, Y. Li, Y. Xing, J. Li, X, Jiang, Dalton Trans. 48 (2019) 15068-15073
    [30]
    D. Long, Z. Chen, X. Rao, Y. Zhang, ACS Appl. Energy Mater. 2020, 3, 5024-5030
    [31]
    J. Wei, W. Shen, J. Zhao, C. Zhang, Y. Zhou, H. Liu, Cataly. Today 316 (2018) 199-205
    [32]
    P. Chen, Y. Li, C. Xiao, L. Chen, J. Guo, S. Shen, C. Au, S. Yin, ACS Sustainable Chem. Eng. 7 (2019) 17500-17506
    [33]
    Z. Wang, Y. Huang, M. Chen, X. Shi, Y. Zhang, J. Cao, W. Ho, S.C. Lee, ACS Appl. Mater. Interfaces 2019, 11, 10651-10662
    [34]
    B, Zhang, T, Zhao, H, Wang, ACS Appl. Mater. Interfaces 11 (2019) 34922-34929
    [35]
    H. Gao, J. Xu, J. Zhou, S. Zhang, R. Zhou, J. Colloid Interface Sci. 570 (2020) 125-134
    [36]
    S. Yuan, P. Cui, Y. Zhang, H. Zhang, L. Huo, Y. Gao, Green Energy Environ. 3 (2018) 368-374
    [37]
    P. Babu, S. Mohanty, B. Naik, K. Parida, ACS Appl. Energy Mater. 1 (2018) 5936-5947
    [38]
    W. Shen, L. Ren, H. Zhou, S. Zhang, W. Fan, J. Mater. Chem. 21 (2011) 3890-3894
    [39]
    Z. Lin, X. Wang, Angew. Chem. Int. Ed. 52 (2013) 1735 -1738
    [40]
    M. Groenewolt, M. Antonietti, Adv. Mater. 17 (2005) 1789-1792
    [41]
    J. Xu, L. Zhang, R. Shi, Y. Zhu, J. Mater. Chem. A, 1 (2013) 14766-14772
    [42]
    R. Ruoff, Nat. nanotechnol. 3 (2008) 10-11
    [43]
    Y. Min, G.D. Moon, B.S. Kim, B. Lim, J. Kim, C.Y. Kang, U. Jeong, J. Am. Chem. Soc. 134 (2012) 2872-2875
    [44]
    L. Li, Z. Chen, Y. Hu, X. Wang, T. Zhang, W. Chen, Q. Wang, J. Am. Chem. Soc. 135 (2013) 1213-1216
    [45]
    P. Chen, L. Meng, L. Chen, J. Guo, S. Shen, C. Au, S. Yin, ACS Sustainable Chem. Eng. 7 (2019) 14203-14209
    [46]
    L. Su, Z. Liu, Y. Ye, C. Shen, Q. Lou, C. Shan, Int. J. Hydrogen Energ. 44 (2019) 19805-19815
    [47]
    S.J. Hong, S. Lee, J.S. Jang, J.S. Lee, Energy Environ. Sci. 4 (2011) 1781-1787
    [48]
    X. Li, J. Chen, X. Wang, J. Sun, M. Antonietti, J. Am. Chem. Soc. 133 (2011) 8074-8077
    [49]
    Y. Chen, J. Zhang, M. Zhang, X. Wang, Chem. Sci. 4 (2013) 3244-3248
    [50]
    Z. Tong, D. Yang, J. Shi, Y. Nan, Y. Sun, Z. Jiang, ACS Appl. Mater. Interfaces 7 (2015) 25693-25701
    [51]
    Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto, S. Ichikawa, T. Hirai, ACS Catal. 4 (2014) 774-780
    [52]
    P. Zhang, J. Deng, J. Mao, H. Li, Y. Wang, Chin. J. Catal. 36 (2015) 1580-1586
    [53]
    Z. Chai, T. Zeng, Q. Li, L. Lu, W. Xiao, D. Xu, J. Am. Chem. Soc. 138 (2016) 10128-10131
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (296) PDF downloads(24) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return