Zhaoning Song, Juncong Yuan, Zhenping Cai, Dong Lin, Xiang Feng, Nan Sheng, Yibin Liu, Xiaobo Chen, Xin Jin, De Chen, Chaohe Yang. Engineering three-layer core–shell S-1/TS-1@dendritic-SiO2 supported Au catalysts towards improved performance for propene epoxidation with H2 and O2. Green Energy&Environment, 2020, 5(4): 473-483. doi: 10.1016/j.gee.2020.11.017
Citation: Zhaoning Song, Juncong Yuan, Zhenping Cai, Dong Lin, Xiang Feng, Nan Sheng, Yibin Liu, Xiaobo Chen, Xin Jin, De Chen, Chaohe Yang. Engineering three-layer core–shell S-1/TS-1@dendritic-SiO2 supported Au catalysts towards improved performance for propene epoxidation with H2 and O2. Green Energy&Environment, 2020, 5(4): 473-483. doi: 10.1016/j.gee.2020.11.017

Engineering three-layer core–shell S-1/TS-1@dendritic-SiO2 supported Au catalysts towards improved performance for propene epoxidation with H2 and O2

doi: 10.1016/j.gee.2020.11.017
  • The advocacy of green chemical industry has led to the development of highly efficient catalysts for direct gas-phase propene epoxidation with green, sustainable and simple essence. The S-1/TS-1@dendritic-SiO2 material with three-layer core–shell structure was developed and used as the support for Au catalysts, which showed simultaneously fantastic PO formation rate, PO selectivity and stability (over 100 h) for propene epoxidation with H2 and O2. It is found that silicalite-1 (S-1) core and the middle thin layer of TS-1 offer great mass transfer ability, which could be responsible for the excellent stability. The designed dendritic SiO2 shell covers part of the acid sites on the external surface of TS-1, inhibiting the side reactions and improving the PO selectivity. Furthermore, three kinds of SiO2 shell morphologies (i.e., dendritic, net, mesoporous shell) were designed, and relationship between shell morphology and catalytic performance was elucidated. The results in this paper harbour tremendous guiding significance for the design of highly efficient epoxidation catalysts.

     

  • loading
  • [1]
    M. Schomer, C. Schull, H. Frey, J. Polym. Sci. Pol. Chem. 51 (2013) 995-1019.
    [2]
    J. Huang, T. Takei, T. Akita, H. Ohashi, M. Haruta, Appl. Catal. B 95 (2010) 430-438.
    [3]
    T.A. Nijhuis, M. Makkee, J.A. Moulijn, B.M. Weckhuysen, Ind. Eng. Chem. Res. 45 (2006) 3447-3459.
    [4]
    V. Russo, R. Tesser, E. Santacesaria, M.D. Serio, Ind. Eng. Chem. Res. 52 (2013) 1168-1178.
    [5]
    S. Bordiga, A. Damin, F. Bonino, G. Ricchiardi, C. Lamberti, A. Zecchina, Angew. Chem. Int. Edit. 41 (2002) 4734-4737.
    [6]
    S.J. Khatib, S.T. Oyama, Catal. Rev. 57 (2015) 306-344.
    [7]
    M. Akimoto, K. Ichikawa, E. Echigoya, J. Catal. 76 (1982) 333-344.
    [8]
    M. Haruta, B.S. Uphade, S.A. Tsubota, A. Miyamoto, Res. Chem. Intermediat. 24 (1998) 329-336.
    [9]
    O.P.H. Vaughan, G. Kyriakou, N. Macleod, M. Tikhov, R.M. Lambert, J. Catal. 236 (2005) 401-404.
    [10]
    H. Yang, D. Tang, X. Lu, Y. Yuan, J. Phys. Chem. C 113 (2009) 8186-8193.
    [11]
    B.S. Uphade, Y. Yamada, T. Akita, T. Nakamura, M. Haruta, Appl. Catal. A-Gen. 215 (2001) 137-148.
    [12]
    J. Lu, X. Zhang, J.J. Bravo-Suarez, K.K. Bando, T. Fujitani, S.T. Oyama, J. Catal. 250 (2007) 350-359.
    [13]
    N. Yap, R.P. Andres, W.N. Delgass, J. Catal. 226 (2004) 156-170.
    [14]
    T.A. Nijhuis, B.J. Huizinga, M. Makkee, J.A. Moulijn, Ind. Eng. Chem. Res. 38 (1999) 884-891.
    [15]
    X. Feng, Y.B. Liu, Y.C. Li, C.H. Yang, Z.H. Zhang, X.Z. Duan, X.G. Zhou, AIChE J. 62 (2016) 3963-3972.
    [16]
    G.W. Zhan, M.M. Du, D.H. Sun, J.L. Huang, X. Yang, Ind. Eng. Chem. Res. 50 (2011) 9019-9026.
    [17]
    M. Du, G. Zhan, Y. Xin, H. Wang, W. Lin, Z. Yao, Z. Jing, L. Ling, J. Huang, D. Sun, J. Catal. 283 (2011) 192-201.
    [18]
    T. Ishida, M. Nagaoka, T. Akita, M. Haruta, Chem-Eur. J. 14 (2008) 8456-8460.
    [19]
    L. Xu, Y. Ren, H. Wu, Y. Liu, Z. Wang, Y. Zhang, J. Xu, H. Peng, P. Wu, J. Mater. Chem. 21 (2011) 10852.
    [20]
    X. Feng, X. Duan, G. Qian, X. Zhou, D. Chen, W. Yuan, Appl. Catal. B 150 (2014) 396-401.
    [21]
    X. Feng, N. Sheng, Y.B. Liu, X.B. Chen, X.G. Zhou, ACS Catal. 7 (2017) 266-2675.
    [22]
    N. Sheng, Z. Liu, Z. Song, D. Lin, X. Feng, Y. Liu, X. Chen, D. Chen, X. Zhou, C. Yang, Chem. Eng. J. 377 (2018) 119954.
    [23]
    X. Feng, X. Duan, H. Cheng, G. Qian, D. Chen, W. Yuan, X. Zhou, J. Catal. 325 (2015) 128-135.
    [24]
    S. Kanungo, K.S. Keshri, A.J.F. Van Hoof, M.F.N. D’Angelo, J.C. Schouten, T.A. Nijhuis, E.J.M. Hensen, B. Chowdhury, J. Catal. 344 (2016) 434-444.
    [25]
    Z.N. Song, X. Feng, N. Sheng, D. Lin, Y.C. Li, Y.B. Liu, X.B. Chen, D. Chen, X.G. Zhou, C.H. Yang, Chem. Eng. J. 377 (2018) 119927.
    [26]
    C.S. Cundy, J.O. Forrest, R.J. Plaisted, Micropor. Mesopor. Mat. 66 (2003) 143-156.
    [27]
    R.B. Khomane, B.D. Kulkarni, A. Paraskar, S.R. Sainkar, Mater. Chem. Phys. 76 (2002) 99-103.
    [28]
    X. Feng, X. Duan, J. Yang, G. Qian, X. Zhou, D. Chen, W. Yuan, Chem. Eng. J. 278 (2015) 234-239.
    [29]
    T. Guo, B. Wang, X. Peng, M. Lin, B. Zhu, Y. Zhang, C. Xia, W.L. Liao, X. Shu, Ind. Eng. Chem. Res. 58 (2019) 7892-7899.
    [30]
    Z.N. Song, X. Feng, N. Sheng, D. Lin, Catal. Today 347 (2020) 102-109.
    [31]
    C. Shen, Y.J. Wang, J.H. Xu, G.S. Luo, Chem. Eng. J. 259 (2015) 552-561.
    [32]
    X. Feng, X. Duan, G. Qian, X. Zhou, D. Chen, W. Yuan, J. Catal. 317 (2014) 99-104.
    [33]
    X. Feng, Z. Song, Y. Liu, X. Chen, X. Jin, W. Yan, C. Yang, J. Luo, X. Zhou, D. Chen, ACS Catal. 8 (2018) 10649-10657.
    [34]
    X. Feng, J. Yang, X. Duan, Y. Cao, B. Chen, W. Chen, D. Lin, G. Qian, D. Chen, C. Yang, ACS Catal. 8 (2018) 7799-7808.
    [35]
    W. Lee, L. Lai, M. Akatay, E.Stach, F. Ribeiro, W. Delgass, J. Catal. 296 (2012) 31-42.
    [36]
    Q. Guo, K. Sun, P.Z. Feng, G. Li, M. Guo, F. Fan, P.C. Li, Chem-Eur. J. 18 (2012) 13854-13860.
    [37]
    J. Su, G. Xiong, J. Zhou, W. Liu, D. Zhou, G. Wang, X. Wang, H. Guo, J. Catal. 288 (2012) 1-7.
    [38]
    Z. Li, W. Ma, Q. Zhong, Ind. Eng. Chem. Res. 58 (2019) 4010-4016.
    [39]
    Z. Zhang, X. Zhao, G. Wang, J. Xu, M. Lu, Y. Tang, W. Fu, X. Duan, G. Qian, D. Chen, X. Zhou, AIChE J. 66 (2020) e16815.
    [40]
    A. Corma, H. Garcia, Chem. Rev. 102 (2002) 3837-3892.
    [41]
    L. Wu, Z. Tang, Y. Yu, X. Yao, W. Liu, Chem. Commun. 54 (2018) 6384-6387.
    [42]
    Y. Yu, Z. Tang, W. Liu, J. Wang, Z. Chen, K. Shen, R.Wang, H. Liu, X. Huang, Y. Liu, Appl. Catal. A-Gen. 587 (2019) 117270.
    [43]
    X. Du, J. He, Langmuir 27 (2011) 2972-2979.
    [44]
    D.H.W. Jr., W.N. Delgass, K.T. Thomson, J. Am. Chem. Soc. 126 (2004) 2956-2962.
    [45]
    L. Wu, S. Zhao, L. Lin, X. Fang, Y. Liu, M. He, J. Catal. 337 (2016) 248-259.
    [46]
    M.G. Clerici, Kinet. Catal. 56 (2015) 450-455.
    [47]
    X. Nie, X. Ji, Y. Chen, X. Guo, C. Song, Mol. Catal. 441 (2017) 150-167.
    [48]
    Z. Song, X. Feng, Y. Liu, C. Yang, X. Zhou, Prog. Chem. 28 (2016) 1762-1773.
    [49]
    B. Chowdhury, J.J. Bravo-Suarez, M. Date, S. Tsubota, M. Haruta, Angew. Chem. Int. Edit. 45 (2006) 412-415.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (88) PDF downloads(21) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return