Volume 7 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Sheng Chu, Pengfei Ou, Roksana Tonny Rashid, Yuyang Pan, Daolun Liang, Huiyan Zhang, Jun Song, Zetian Mi. Efficient photoelectrochemical conversion of CO2 to syngas by photocathode engineering. Green Energy&Environment, 2022, 7(3): 545-553. doi: 10.1016/j.gee.2020.11.015
Citation: Sheng Chu, Pengfei Ou, Roksana Tonny Rashid, Yuyang Pan, Daolun Liang, Huiyan Zhang, Jun Song, Zetian Mi. Efficient photoelectrochemical conversion of CO2 to syngas by photocathode engineering. Green Energy&Environment, 2022, 7(3): 545-553. doi: 10.1016/j.gee.2020.11.015

Efficient photoelectrochemical conversion of CO2 to syngas by photocathode engineering

doi: 10.1016/j.gee.2020.11.015
  • The synthesis of renewable chemical fuels from CO2 and H2O via photoelectrochemical (PEC) route reprensents a promising room-temperature approach for transforming greenhouse gas into value-added chemicals (e.g., syngas), but to date it has been hampered by the lack of efficient photocathode for CO2 reduction. Herein, we report efficient PEC CO2 reduction into syngas by photocathode engineering. The photocathode is consisting of a planar p-n Si junction for strong light harvesting, GaN nanowires for efficient electron extraction and transfer, and Au/TiO2 for rapid electrocatalytic syngas production. The photocathode yields a record-high solar energy conversion efficiency of 2.3%. Furthermore, desirable syngas compositions with CO/H2 ratios such as 1:2 and 1:1 can be produced by simply varying the size of Au nanoparticle. Theoretical calculations reveal that the active sites for CO and H2 generation are the facet and undercoordinated sites of Au particles, respectively.

     

  • S. Chu and P. Ou contributed equally to this work.
  • loading
  • [1]
    B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, C.P. Kubiak, Annu. Rev. Phys. Chem. 63 (2012) 541-569.
    [2]
    J.L. White, M.F. Baruch, J.E. Pander, Y. Hu, I.C. Fortmeyer, J.E. Park, T. Zhang, K. Liao, J. Gu, Y. Yan, T.W. Shaw, E. Abelev, A.B. Bocarsly, Chem. Rev. 115 (2015) 12888-12935.
    [3]
    S.J. Xie, Q.H. Zhang, G.D. Liu, Y. Wang, Chem. Commun. 52 (2016) 35-59.
    [4]
    L. Zhang, Z.J. Zhao, T. Wang, J.L. Gong, Chem. Soc. Rev. 47 (2018) 5423-5443.
    [5]
    P.L. Wang, S.C. Wang, H.Q. Wang, Z.B. Wu, L.Z. Wang, Part. Part. Syst. Char. 35 (2018) 1700371.
    [6]
    H. Pang, T. Masuda, J.H. Ye, Chem.-Asian J. 13 (2018) 127-142.
    [7]
    E. Kalamaras, M.M. Maroto-Valer, M.H. Shao, J. Xuan, H.Z. Wang, Catal. Today 317 (2018) 56-75.
    [8]
    N. Zhang, R. Long, C. Gao, Y.J. Xiong, Sci. China Mater. 61 (2018) 771-805.
    [9]
    V. Kumaravel, J. Bartlett, S.C. Pillai, ACS Energy Lett. 5 (2020) 486-519.
    [10]
    P. Ding, T. Jiang, N. Han, Y. Li, Mater. Today Nano 10 (2020) 100077.
    [11]
    Y. Liu, L. Guo, J. Chem. Phys. 152 (2020) 100901.
    [12]
    J.Y. Wang, Y.J. Guan, X.G. Yu, Y.Z. Cao, J.Z. Chen, Y.L. Wang, B. Hu, H.W. Jing, iScience 23 (2020) 100768.
    [13]
    J.Y. Feng, H.T. Huang, S.C. Yan, W.J. Luo, T. Yu, Z.S. Li, Z.G. Zou, Nano Today 30 (2020) 100830.
    [14]
    S.R. Foit, I.C. Vinke, L.G.J. de Haart, R.A. Eichel, Angew. Chem. Int. Ed. 56 (2017) 5402-5411.
    [15]
    P. Furler, J.R. Scheffe, A. Steinfeld, Energy Environ. Sci. 5 (2012) 6098-6103.
    [16]
    F.F. Li, J. Lau, S. Licht, Adv. Sci. 2 (2015) 1500260.
    [17]
    D.W. Li, S.X. Ouyang, H. Xu, D. Lu, M. Zhao, X.L. Zhang, J.H. Ye, Chem. Commun. 52 (2016) 5989-5992.
    [18]
    F. Urbain, P.Y. Tang, N.M. Carretero, T. Andreu, L.G. Gerling, C. Voz, J. Arbiol, J.R. Morante, Energy Environ. Sci. 10 (2017) 2256-2266.
    [19]
    A. Tavasoli, G. Ozin, Joule 2 (2018) 571-575.
    [20]
    H.W. Zhang, J.T. Ming, J.W. Zhao, Q. Gu, C. Xu, Z.X. Ding, R.S. Yuan, Z.Z. Zhang, H.X. Lin, X.X. Wang, J.L. Long, Angew. Chem. Int. Ed. 58 (2019) 7718-7722.
    [21]
    A. Li, T. Wang, X. Chang, Z.J. Zhao, C. Li, Z. Huang, P. Yang, G. Zhou, J. Gong, Chem. Sci. 9 (2018) 5334-5340.
    [22]
    M. Chen, J. Wu, C. Lu, X. Luo, Y. Huang, B. Jin, H. Gao, X. Zhang, M. Argyle, Z. Liang, Green Energy Environ, https://doi.org/10.1016/j.gee.2020.07.001.
    [23]
    M. Schreier, P. Gao, M.T. Mayer, J.S. Luo, T. Moehl, M.K. Nazeeruddin, S.D. Tilley, M. Gratzel, Energy Environ. Sci. 8 (2015) 855-861.
    [24]
    G. Sahara, R. Abe, M. Higashi, T. Morikawa, K. Maeda, Y. Ueda, O. Ishitani, Chem. Commun. 51 (2015) 10722-10725.
    [25]
    X. Deng, R. Li, S.K. Wu, L. Wang, J.H. Hu, J. Ma, W.B. Jiang, N. Zhang, X.S. Zheng, C. Gao, L.J. Wang, Q. Zhang, J.F. Zhu, Y.J. Xiong, J. Am. Chem. Soc. 141 (2019) 10924-10929.
    [26]
    X.L. Gu, L.P. Qian, G.F. Zheng, Mol. Catal. 492 (2020) 110953.
    [27]
    Q. Kong, D. Kim, C. Liu, Y. Yu, Y.D. Su, Y.F. Li, P.D. Yang, Nano Lett. 16 (2016) 5675-5680.
    [28]
    D. He, T. Jin, W. Li, S. Pantovich, D.W. Wang, G.H. Li, Chem.-Eur. J. 22 (2016) 13064-13067.
    [29]
    S. Chu, S.Z. Fan, Y.J. Wang, D. Rossouw, Y.C. Wang, G.A. Botton, Z. Mi, Angew. Chem. Int. Ed. 55 (2016) 14260-14264.
    [30]
    J.T. Song, H. Ryoo, M. Cho, J. Kim, J.G. Kim, S.Y. Chung, J. Oh, Adv. Energy Mater. 7 (2017) 1601103.
    [31]
    S. Chu, P. Ou, P. Ghamari, S. Vanka, B. Zhou, I. Shih, J. Song, Z. Mi, J. Am. Chem. Soc. 140 (2018) 7869-7877.
    [32]
    Y.P. Hu, F.J. Chen, P. Ding, H. Yang, J.M. Chen, C.Y. Zha, Y.G. Li, J. Mater. Chem. A 6 (2018) 21906-21912.
    [33]
    C.C. Li, T. Wang, B. Liu, M.X. Chen, A. Li, G. Zhang, M.Y. Du, H. Wang, S.F. Liu, J.L. Gong, Energy Environ. Sci. 12 (2019) 923-928.
    [34]
    H. Pang, G. Yang, P. Li, H. Huang, F. Ichihara, T. Takei, J. Ye, Catal. Today 339 (2019) 321-327.
    [35]
    L. Wei, J. Lin, S. Xie, W. Ma, Q. Zhang, Z. Shen, Y. Wang, Nanoscale 11 (2019) 12530-12536.
    [36]
    S. Chu, P. Ou, R.T. Rashid, P. Ghamari, R. Wang, H.N. Tran, S. Zhao, H. Zhang, J. Song, Z. Mi, iScience 23 (2020) 101390.
    [37]
    C. Kim, S. Choi, M.J. Choi, S.A. Lee, S.H. Ahn, S.Y. Kim, H.W. Jang, Appl. Sci. 10 (2020) 3487.
    [38]
    J.S. DuChene, G. Tagliabue, A.J. Welch, W.H. Cheng, H.A. Atwater, Nano Lett. 18 (2018) 2545-2550.
    [39]
    J.W. Jang, S. Cho, G. Magesh, Y.J. Jang, J.Y. Kim, W.Y. Kim, J.K. Seo, S. Kim, K.H. Lee, J.S. Lee, Angew. Chem. Int. Ed. 53 (2014) 5852-5857.
    [40]
    V. Andrei, B. Reuillard, E. Reisner, Nat. Mater. 19 (2020) 189-194.
    [41]
    Y.H. Chen, C.W. Li, M.W. Kanan, J. Am. Chem. Soc. 134 (2012) 19969-19972.
    [42]
    M. Liu, Y.J. Pang, B. Zhang, P. De Luna, O. Voznyy, J.X. Xu, X.L. Zheng, C.T. Dinh, F.J. Fan, C.H. Cao, F.P.G. de Arquer, T.S. Safaei, A. Mepham, A. Klinkova, E. Kumacheva, T. Filleter, D. Sinton, S.O. Kelley, E.H. Sargent, Nature 537 (2016) 382.
    [43]
    Q. Lu, J. Rosen, Y. Zhou, G.S. Hutchings, Y.C. Kimmel, J.G.G. Chen, F. Jiao, Nat. Commun. 5 (2014) 3242.
    [44]
    H.S. Jeon, I. Sinev, F. Scholten, N.J. Divins, I. Zegkinoglou, L. Pielsticker, B. Roldan Cuenya, J. Am. Chem. Soc. 140 (2018) 9383-9386.
    [45]
    A. Vasileff, Y. Zheng, S.Z. Qiao, Adv. Energy Mater. 7 (2017) 1700759.
    [46]
    N.N. Meng, W. Zhou, Y.F. Yu, Y. Liu, B. Zhang, ACS Catal. 9 (2019) 10983-10989.
    [47]
    Y. Ji, Y.M. Shi, C.B. Liu, B. Zhang, Sci. China Mater. (2020) https://doi.org/10.1007/s40843-020-1396-7.
    [48]
    H. Takeda, C. Cometto, O. Ishitani, M. Robert, ACS Catal. 7 (2017) 70-88.
    [49]
    K. Jiang, S. Siahrostami, A.J. Akey, Y.B. Li, Z.Y. Lu, J. Lattimer, Y.F. Hu, C. Stokes, M. Gangishetty, G.X. Chen, Y.W. Zhou, W. Hill, W.B. Cai, D. Bell, K.R. Chan, J.K. Norskov, Y. Cui, H.T. Wang, Chem 3 (2017) 950-960.
    [50]
    J. Gu, C.S. Hsu, L.C. Bai, H.M. Chen, X.L. Hu, Science 364 (2019) 1091.
    [51]
    P. Kang, Z. Chen, A. Nayak, S. Zhang, T.J. Meyer, Energy Environ. Sci. 7 (2014) 4007-4012.
    [52]
    W. Sheng, S. Kattel, S. Yao, B. Yan, Z. Liang, C.J. Hawxhurst, Q. Wu, J.G. Chen, Energy Environ. Sci. 10 (2017) 1180-1185.
    [53]
    S.J. Guo, S.Q. Zhao, X.Q. Wu, H. Li, Y.J. Zhou, C. Zhu, N.J. Yang, X. Jiang, J. Gao, L. Bai, Y. Liu, Y. Lifshitz, S.T. Lee, Z.H. Kang, Nat. Commun. 8 (2017) 1828.
    [54]
    S. Hernandez, M. Amin Farkhondehfal, F. Sastre, M. Makkee, G. Saracco, N. Russo, Green Chem. 19 (2017) 2326-2346.
    [55]
    R. He, A. Zhang, Y. Ding, T. Kong, Q. Xiao, H. Li, Y. Liu, J. Zeng, Adv. Mater. 30 (2018) 1705872.
    [56]
    M.B. Ross, Y. Li, P. De Luna, D. Kim, E.H. Sargent, P. Yang, Joule 3 (2019) 257-264.
    [57]
    P. Chen, Y. Jiao, Y.-H. Zhu, S.-M. Chen, L. Song, M. Jaroniec, Y. Zheng, S.Z. Qiao, J. Mater. Chem. A 7 (2019) 7675-7682.
    [58]
    H. Li, P. Wen, D.S. Itanze, Z.D. Hood, X. Ma, M. Kim, S. Adhikari, C. Lu, C.C. Dun, M.F. Chi, Y.J. Qiu, S.M. Geyer, Nat. Commun. 10 (2019) 5724.
    [59]
    N.N. Meng, C.B. Liu, Y. Liu, Y.F. Yu, B. Zhang, Angew. Chem. Int. Ed. 58 (2019) 18908-18912.
    [60]
    D.X. Yang, Q.G. Zhu, X.F. Sun, C.J. Chen, W.W. Guo, G.Y. Yang, B.X. Han, Angew. Chem. Int. Ed. 59 (2020) 2354-2359.
    [61]
    X. Wang, Z.L. Wang, Y. Bai, L. Tan, Y.Q. Xu, X.J. Hao, J.K. Wang, A.H. Mahadi, Y.F. Zhao, L.R. Zheng, Y.F. Song, J. Energy Chem. 46 (2020) 1-7.
    [62]
    M.G. Kibria, Z. Mi, J. Mater. Chem. A 4 (2016) 2801-2820.
    [63]
    U. Chatterjee, J.H. Park, D.Y. Um, C.R. Lee, Renew. Sust. Energy Rev. 79 (2017) 1002-1015.
    [64]
    S. Chu, X. Kong, S. Vanka, H. Guo, Z. Mi, Semiconduct. Semimet. 97 (2017) 223-255.
    [65]
    P. Varadhan, H.C. Fu, D. Priante, J.R.D. Retamal, C. Zhao, M. Ebaid, T.K. Ng, I. Ajia, S. Mitra, I.S. Roqan, B.S. Ooi, J.H. He, Nano Lett 17 (2017) 1520-1528.
    [66]
    X. Liu, F.A. Chowdhury, S. Vanka, S. Chu, Z. Mi, Phys. Status Solidi A 217 (2020) 1900885.
    [67]
    S. Vanka, E. Arca, S. Cheng, K. Sun, G.A. Botton, G. Teeter, Z. Mi, Nano Lett. 18 (2018) 6530-6537.
    [68]
    B. Zhou, X. Kong, S. Vanka, S. Chu, P. Ghamari, Y. Wang, N. Pant, I. Shih, H. Guo, Z. Mi, Nat. Commun. 9 (2018) 3856.
    [69]
    J. Deng, Y.D. Su, D. Liu, P.D. Yang, B. Liu, C. Liu, Chem. Rev. 119 (2019) 9221-9259.
    [70]
    S. Chu, S. Vanka, Y. Wang, J. Gim, Y. Wang, Y.-H. Ra, R. Hovden, H. Guo, I. Shih, Z. Mi, ACS Energy Lett. 3 (2018) 307-314.
    [71]
    G. Kresse, J. Hafner, Phys. Rev. B 49 (1994) 14251.
    [72]
    G. Kresse, J. Furthmuller, Comput. Mater. Sci. 6 (1996) 15-50.
    [73]
    J. Wellendorff, K.T. Lundgaard, A. Moegelhoej, V. Petzold, D.D. Landis, J.K. Noerskov, T. Bligaard, K.W. Jacobsen, Phys. Rev. B 85 (2012) 235149.
    [74]
    P.E. Blochl, Phys. Rev. B 50 (1994) 17953.
    [75]
    G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758.
    [76]
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188.
    [77]
    J.K. Noerskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B 108 (2004) 17886-17892.
    [78]
    V. Tripkovic, E. Skulason, S. Siahrostami, J.K. Noerskov, J. Rossmeisl, Electrochimi. Acta 55 (2010) 7975-7981.
    [79]
    C. Dong, C. Lian, S. Hu, Z. Deng, J. Gong, M. Li, H. Liu, M. Xing, J. Zhang, Nat. Commun. 9 (2018) 1252.
    [80]
    D. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. Wang, J. Wang, X. Bao, J. Am. Chem. Soc. 137 (2015) 4288-4291.
    [81]
    R. Reske, H. Mistry, F. Behafarid, B. Roldan Cuenya, P. Strasser, J. Am. Chem. Soc. 136 (2014) 6978-6986.
    [82]
    H. Mistry, R. Reske, Z. Zeng, Z.J. Zhao, J. Greeley, P. Strasser, B.R. Cuenya, J. Am. Chem. Soc. 136 (2014) 16473-16476.
    [83]
    W. Zhu, R. Michalsky, O. Metin, H. Lv, S. Guo, C.J. Wright, X. Sun, A.A. Peterson, S. Sun, J. Am. Chem. Soc. 135 (2013) 16833-16836.
    [84]
    T. Wang, Z. Luo, C. Li, J. Gong, Chem. Soc. Rev. 43 (2014) 7469-7484.
    [85]
    R.W. Johnson, A. Hultqvist, S.F. Bent, Mater. Today 17 (2014) 236-246.
    [86]
    A.G. Scheuermann, P.C. McIntyre, J. Phys. Chem. Lett. 7 (2016) 2867-2878.
    [87]
    S. Kattel, P. Liu, J.G. Chen, J. Am. Chem. Soc. 139 (2017) 9739-9754.
    [88]
    D.F. Gao, Y. Zhang, Z.W. Zhou, F. Cai, X.F. Zhao, W.G. Huang, Y.S. Li, J.F. Zhu, P. Liu, F. Yang, G.X. Wang, X.H. Bao, J. Am. Chem. Soc. 139 (2017) 5652-5655.
    [89]
    J. Qiu, G. Zeng, M.A. Ha, M. Ge, Y. Lin, M. Hettick, B. Hou, A.N. Alexandrova, A. Javey, S.B. Cronin, Nano Lett. 15 (2015) 6177-6181.
    [90]
    P. Zhang, T. Wang, J.L. Gong, Chem. Commun. 52 (2016) 8806-8809.
    [91]
    H.J. Kim, K.L. Kearney, L.H. Le, Z.J. Haber, A.A. Rockett, M.J. Rose, J. Phys. Chem. C 120 (2016) 25697-25708
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (254) PDF downloads(26) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return