Volume 6 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Yaping Zhang, Yuyu Bu, Lin Wang, Jin-Ping Ao. Regulation of the photogenerated carrier transfer process during photoelectrochemical water splitting: A review. Green Energy&Environment, 2021, 6(4): 479-495. doi: 10.1016/j.gee.2020.11.007
Citation: Yaping Zhang, Yuyu Bu, Lin Wang, Jin-Ping Ao. Regulation of the photogenerated carrier transfer process during photoelectrochemical water splitting: A review. Green Energy&Environment, 2021, 6(4): 479-495. doi: 10.1016/j.gee.2020.11.007

Regulation of the photogenerated carrier transfer process during photoelectrochemical water splitting: A review

doi: 10.1016/j.gee.2020.11.007
  • Photoelectrochemical (PEC) water splitting is considered as an ideal technology to produce hydrogen. Photogenerated carrier migration is one of the most important roles in the whole process of PEC water splitting. It includes bulk transfer inside of the photoelectrode and the exchange at the solid–liquid interface. The energy barriers during the migration process lead to the dramatic recombination of photogenerated hot carrier and the reducing of their redox capacity. Thus, an applied bias voltage should be provided to overcome these energy barriers, which brings the additional loss of energy. Plentiful researches indicate that some methods for the regulation of photogenerated hot carrier, such as p-n junction, unique transfer nanochannel, tandem nanostructure and Z-Scheme transfer structure et al., show great potential to achieve high-efficient PEC water overall splitting without any applied bias voltage. Up to now, many reviews have summarized and analyzed the methods to enhance the PEC or photocatalysis water splitting from the perspectives of materials, nanostructures and surface modification etc. However, few of them focus on the topic of photogenerated carrier transfer regulation, which is an important and urgent developing technique. For this reason, this review focuses on the regulation of photogenerated carriers generated by the photoelectrodes and summarizes different advanced methods for photogenerated carrier regulation developed in recent years. Some comments and outlooks are also provided at the end of this review.

     

  • loading
  • [1]
    C. Acar, I. Dincer, G.F. Naterer, Int. J. Energy Res. 40(2016) 1449-1473.
    [2]
    C. Acar, I. Dincer, J. Clean. Prod. 218(2019) 835-849.
    [3]
    S.E. Hosseini, M.A. Wahid, Renew. Sustain. Energy Rev. 57(2016) 850-866.
    [4]
    T.S. Veras, T.S. Mozer, D.C.R.M. Santos, A.S. César, Int. J. Hydrogen Energy 42(2017) 2018-2033.
    [5]
    P. Nikolaidis, A. Poullikkas, Renew. Sustain. Energy Rev. 67(2017) 597-611.
    [6]
    S. Choi, T.C. Davenport, S.M. Haile, Energy Environ. Sci. 12(2019) 206-215.
    [7]
    I. Roger, M.A. Shipman, M.D. Symes, Nat. Rev. Chem. 1(2017) 1-13.
    [8]
    T. Hisatomi, K. Domen, Nat. Catal. 2(2019) 387-399.
    [9]
    C. Jiang, S.J.A. Moniz, A. Wang, T. Zhang, J. Tang, Chem. Soc. Rev. 46(2017) 4645-4660.
    [10]
    M.R. Shaner, H.A. Atwater, N.S. Lewis, E.W. McFarland, Energy Environ. Sci. 9(2016) 2354-2371.
    [11]
    C. Liu, N.P. Dasgupta, P. Yang, Chem. Mater. 26(2013) 415-422.
    [12]
    T. Yao, X. An, H. Han, J.Q. Chen, C. Li, Adv. Energy Mater. 8(2018) 1800210.
    [13]
    S. Hou, X.C. Dai, Y.B. Li, M.H. Huang, T. Li, Z.Q. Wei, Y. He, G. Xiao, F.X. Xiao, J. Mater. Chem. A 7(2019) 22487-22499.
    [14]
    Z.Q. Wei, X.C. Dai, S. Hou, Y.B. Li, M.H. Huang, T. Li, S. Xu, F.X. Xiao, J. Mater. Chem. A 8(2020) 177-189.
    [15]
    X. Chen, Z. Zhang, L. Chi, A.K. Nair, W. Shangguan, Z. Jiang, NanoMicro Lett. 8(2016) 1-12.
    [16]
    Y. Yang, S. Niu, D. Han, T. Liu, G. Wang, Y. Li, Adv. Energy Mater. 7(2017) 1700555.
    [17]
    J.M. Lee, J.H. Baek, T.M. Gill, X. Shi, S. Lee, I.S. Cho, H.S. Jung, X. Zheng, J. Mater. Chem. A 7(2019) 9019-9024.
    [18]
    M. Rohloff, B. Anke, S. Zhang, U. Gernert, C. Scheu, M. Lerch, A. Fischer, Sustain. Energy Fuels 1(2017) 1830-1846.
    [19]
    L. Yang, Y. Xiong, W. Guo, J. Guo, D. Gao, Y. Zhang, P. Xiao, Electrochim. Acta 256(2017) 268-277.
    [20]
    M. Zhou, J. Bao, Y. Xu, J. Zhang, J. Xie, M. Guan, C. Wang, L. Wen, Y. Lei, Y. Xie, ACS Nano 8(2014) 7088-7098.
    [21]
    X. Yin, W. Qiu, W. Li, C. Li, K. Wang, X. Yang, L. Du, Y. Liu, J. Li, Chem. Eng. J. 389(2020) 124365.
    [22]
    M. Huang, J. Bian, W. Xiong, C. Huang, R. Zhang, J. Mater. Chem. A 6(2018) 3602-3609.
    [23]
    Z. Jiao, T. Chen, J. Xiong, T. Wang, G. Lu, J. Ye, Y. Bi, Sci. Rep. 3(2013) 2720.
    [24]
    A. Łącz, Ł. Łańcucki, R. Lach, B. Kamecki, E. Drożdż, Int. J. Hydrogen Energy 43(2018) 8999-9005.
    [25]
    J. Jing, Z. Chen, Y. Bu, M. Sun, W. Zheng, W. Li, Electrochim. Acta 304(2019) 386-395.
    [26]
    M.B. Johansson, A. Mattsson, S.E. Lindquist, G.A. Niklasson, L. Österlund, J. Phys. Chem. C 121(2017) 7412-7420.
    [27]
    R. Zhang, F. Ning, S. Xu, L. Zhou, M. Shao, M. Wei, Electrochim. Acta 274(2018) 217-223.
    [28]
    Q. Li, S. Li, O. Ajouyed, C. Chen, Y. Zhou, C. Li, S. Niu, H. Yi, J. Huo, S. Wang, J. Alloys Compd. 816(2020) 152610.
    [29]
    S. Wang, P. Chen, Y. Bai, J.H. Yun, G. Liu, L. Wang, Adv. Mater. 30(2018), e1800486.
    [30]
    X. Zhao, J. Hu, X. Yao, S. Chen, Z. Chen, ACS Appl. Energy Mater. 1(2018) 3410-3419.
    [31]
    Y. Li, R. Yao, H. Wang, X. Wu, J. Wu, X. Wu, W. Qin, ACS Appl. Mater. Interfaces 9(2017) 11711-11720.
    [32]
    Y. Tu, S. Chen, X. Li, J. Gorbaciova, W.P. Gillin, S. Krause, J. Briscoe, J. Phys. Chem. C 6(2018) 1815-1821.
    [33]
    Z. Zhang, X. Tan, T. Yu, L. Jia, X. Huang, Int. J. Hydrogen Energy 41(2016) 11634-11643.
    [34]
    X. Lv, L. Tao, M. Cao, X. Xiao, M. Wang, Y. Shen, Nano Energy 44(2018) 411-418.
    [35]
    F. Qi, W. An, H. Wang, J. Hu, H. Guo, L. Liu, W. Cui, Mater. Sci. Semicond. Process. 109(2020) 104954.
    [36]
    C. Chen, Y. Wei, G. Yuan, Q. Liu, R. Lu, X. Huang, Y. Cao, P. Zhu, Adv. Funct. Mater. 27(2017) 1701575.
    [37]
    Q. Pan, K. Yang, G. Wang, D. Li, J. Sun, B. Yang, Z. Zou, W. Hu, K. Wen, H. Yang, Chem. Eng. J. 372(2019) 399-407.
    [38]
    V. Gurylev, C.Y. Su, T.P. Perng, Appl. Surf. Sci. 411(2017) 279-284.
    [39]
    N. Wei, Y. Liu, M. Feng, Z. Li, S. Chen, Y. Zheng, D. Wang, Appl. Catal. B 244(2019) 519-528.
    [40]
    F. Zhan, Y. Liu, K. Wang, Y. Liu, X. Yang, Y. Yang, X. Qiu, W. Li, J. Li, ACS Appl. Mater. Interfaces 11(2019) 15467-15477.
    [41]
    G. Wang, Y. Ling, H. Wang, X. Yang, C. Wang, J.Z. Zhang, Y. Li, Energy Environ. Sci. 5(2012) 6180-6187.
    [42]
    Y. Bu, J. Tian, Z. Chen, Q. Zhang, W. Li, F. Tian, J.P. Ao, Adv. Mater. Interfaces 4(2017) 1601235.
    [43]
    C. Liu, J. Zhou, J. Su, L. Guo, Appl. Catal. B 241(2019) 506-513.
    [44]
    S.S. Yi, B.R. Wulan, J.M. Yan, Q. Jiang, Adv. Funct. Mater. 29(2019) 1801902.
    [45]
    Q. Wang, T. Niu, L. Wang, C. Yan, J. Huang, J. He, H. She, B. Su, Y. Bi, Chem. Eng. J. 337(2018) 506-514.
    [46]
    C. Liu, F. Meng, L. Zhang, D. Zhang, S. Wei, K. Qi, J. Fan, H. Zhang, X. Cui, Appl. Surf. Sci. 469(2019) 276-282.
    [47]
    S. Bai, J. Liu, M. Cui, R. Luo, J. He, A. Chen, Dalton Trans. 47(2018) 6763-6771.
    [48]
    K.H. Ye, Z. Chai, J. Gu, X. Yu, C. Zhao, Y. Zhang, W. Mai, Nano Energy 18(2015) 222-231.
    [49]
    Y.C. Chen, Z.B. Chen, Y.K. Hsu, J. Colloid Interface Sci. 523(2018) 201-207.
    [50]
    L. Meng, J. He, W. Tian, M. Wang, R. Long, L. Li, Adv. Energy Mater. 9(2019) 1902135.
    [51]
    S. Liu, Z. Luo, L. Li, H. Li, M. Chen, T. Wang, J. Gong, Nano Energy 53(2018) 125-129.
    [52]
    Y. Chen, H. Jiang, L. Li, Q. Wang, L. Du, X. Liu, G. Tian, Int. J. Hydrogen Energy 45(2020) 6174-6183.
    [53]
    I.H. Yoo, Y.J. Lee, S.S. Kalanur, H. Seo, Appl. Catal. B 264(2020) 118542.
    [54]
    L. Pan, J.H. Kim, M.T. Mayer, M.K. Son, A. Ummadisingu, J.S. Lee, A. Hagfeldt, J. Luo, M. Grätzel, Nat. Catal. 1(2018) 412-420.
    [55]
    L.A. King, T.R. Hellstern, J. Park, R. Sinclair, T.F. Jaramillo, ACS Appl. Mater. Interfaces 9(2017) 36792-36798.
    [56]
    P. Tang, H. Xie, C. Ros, L. Han, M. Biset-Peiró, Y. He, W. Kramer, A.P. Rodríguez, E. Saucedo, J.R. Galán-Mascarós, T. Andreu, J.R. Morante, J. Arbiol, Energy Environ. Sci. 10(2017) 2124-2136.
    [57]
    T. Zhi, T. Tao, B. Liu, M. Li, Z. Zhuang, J. Dai, Y. Li, G. Zhang, W. Luo, Z. Xie, P. Chen, D. Chen, Z. Li, P. Han, Z. Zou, R. Zhang, Y. Zheng, Physica Status Solidi-R 213(2016) 2704-2708.
    [58]
    A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, E. Thimsen, Nat. Mater. 10(2011) 456-461.
    [59]
    Z. Liu, J. Zhang, W. Yan, ACS Sustain. Chem. Eng. 6(2018) 3565-3574.
    [60]
    J.H. Baek, B.J. Kim, G.S. Han, S.W. Hwang, D.R. Kim, I.S. Cho, H.S. Jung, ACS Appl. Mater. Interfaces 9(2017) 1479-1487.
    [61]
    J.M. Li, H.Y. Cheng, Y.H. Chiu, Y.J. Hsu, Nanoscale 8(2016) 15720-15729.
    [62]
    R. Wang, T. Xie, T. Zhang, T. Pu, Y. Bu, J.P. Ao, J. Mater. Chem. A 6(2018) 12956-12961.
    [63]
    J. Safaei, H. Ullah, N.A. Mohamed, M.F.M. Noh, M.F. Soh, A.A. Tahir, N.A. Ludin, M.A. Ibrahim, W.N.R.W. Isahak, M.A.M. Teridi, Appl. Catal. B 234(2018) 296-310.
    [64]
    P. Wen, Y. Sun, H. Li, Z. Liang, H. Wu, J. Zhang, H. Zeng, S.M. Geyer, L. Jiang, Appl. Catal. B 263(2020) 118180.
    [65]
    D. Feng, J. Qu, R. Zhang, X. Sun, L. Zheng, H. Liu, X. Zhang, Z. Lu, F. Lu, W. Wang, H. Dong, Y. Cheng, H. Liu, R. Zheng, J. Catal. 381(2020) 501-507.
    [66]
    J.S. Yang, J.J. Wu, Nano Energy 32(2017) 232-240.
    [67]
    J. Li, X. Jin, R. Li, Y. Zhao, X. Wang, X. Liu, H. Jiao, Appl. Catal. B 240(2019) 1-8.
    [68]
    X.C. Dai, M.H. Huang, Y.B. Li, T. Li, B.B. Zhang, Y. He, G. Xiao, F.X. Xiao, J. Mater. Chem. A 7(2019) 2741-2753.
    [69]
    X.C. Dai, M.H. Huang, Y.B. Li, T. Li, S. Hou, Z.Q. Wei, F.X. Xiao, J. Phys. Chem. C 124(2020) 4989-4998.
    [70]
    X. Cheng, Y. Zhang, Y. Bi, Nano Energy 57(2019) 542-548.
    [71]
    H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, S. Jin, Energy Environ. Sci. 9(2016) 3113-3119.
    [72]
    X. Li, S. Liu, K. Fan, Z. Liu, B. Song, J. Yu, Adv. Energy Mater. 8(2018) 1800101.
    [73]
    M.Z. Ge, C.Y. Cao, S.H. Li, Y.X. Tang, L.N. Wang, N. Qi, J.Y. Huang, K.Q. Zhang, S.S. Al-Deyab, Y.K. Lai, Nanoscale 8(2016) 5226-5234.
    [74]
    R. Zhang, M. Shao, S. Xu, F. Ning, L. Zhou, M. Wei, Nano Energy 33(2017) 21-28.
    [75]
    J. Xian, D. Li, J. Chen, X. Li, M. He, Y. Shao, L. Yu, J. Fang, ACS Appl. Mater. Interfaces 6(2014) 13157-13166.
    [76]
    Z. Xie, X. Liu, W. Wang, X. Wang, C. Liu, Q. Xie, Z. Li, Z. Zhang, Nano Energy 11(2015) 400-408.
    [77]
    G. Li, Z. Lian, W. Wang, D. Zhang, H. Li, Nano Energy 19(2016) 446-454.
    [78]
    N.A. Arzaee, M.F.M. Noh, A.A. Halim, M.A.F.A. Rahim, N.A. Mohamed, J. Safaei, A. Aadenan, S.N.S. Nasir, A.F. Ismail, M.A.M. Teridi, Ceram. Int. 45(2019) 16797-16802.
    [79]
    E. Samuel, B. Joshi, M.W. Kim, M.T. Swihart, S.S. Yoon, Nano Energy 72(2020) 104648.
    [80]
    Y. Zhou, L. Zhang, L. Lin, B.R. Wygant, Y. Liu, Y. Zhu, Y. Zheng, C.B. Mullins, Y. Zhao, X. Zhang, G. Yu, Nano Lett. 17(2017) 8012-8017.
    [81]
    Y. Hou, F. Zuo, A.P. Dagg, J. Liu, P. Feng, Adv. Mater. 26(2014) 5043-5049.
    [82]
    W. Wang, J. Dong, X. Ye, Y. Li, Y. Ma, L. Qi, Small 12(2016) 1469-1478.
    [83]
    K. Yuan, Q. Cao, X. Li, H.Y. Chen, Y. Deng, Y.Y. Wang, W. Luo, H.L. Lu, D.W. Zhang, Nano Energy 41(2017) 543-551.
    [84]
    S. Wang, T. He, J.H. Yun, Y. Hu, M. Xiao, A. Du, L. Wang, Adv. Funct. Mater. 28(2018) 1802685.
    [85]
    R. Chen, C. Zhen, Y. Yang, X. Sun, J.T.S. Irvine, L. Wang, G. Liu, H.M. Cheng, Nano Energy 59(2019) 683-688.
    [86]
    Y. Kuang, Q. Jia, H. Nishiyama, T. Yamada, A. Kudo, K. Domen, Adv. Energy Mater. 6(2016) 1501645.
    [87]
    Y. Li, Z. Liu, J. Zhang, Z. Guo, Y. Xin, L. Zhao, J. Alloys Compd. 790(2019) 493-501.
    [88]
    L. Wu, L. Wang, J. Zhu, M. Sun, X. Liu, P. Schmuki, J. Zhang, J. Mater. Chem. A 8(2020) 2563-2570.
    [89]
    B. Zhang, L. Wang, Y. Zhang, Y. Ding, Y. Bi, Angew. Chem. Int. Ed. 57(2018) 2248-2252.
    [90]
    Y. Zhang, Y. Li, D. Ni, Z. Chen, X. Wang, Y. Bu, J.P. Ao, Adv. Funct. Mater. 29(2019) 1902101.
    [91]
    H. Döscher, J.L. Young, J.F. Geisz, J.A. Turner, T.G. Deutsch, Energy Environ. Sci. 9(2016) 74-80.
    [92]
    M. Ahmed, I. Dincer, Int. J. Hydrogen Energy 44(2019) 2474-2507.
    [93]
    W.H. Cheng, M.H. Richter, M.M. May, J. Ohlmann, D. Lackner, F. Dimroth, T. Hannappel, H.A. Atwater, H.J. Lewerenz, ACS Energy Lett. 3(2018) 1795-1800.
    [94]
    Y. Chen, X. Feng, Y. Liu, X. Guan, C. Burda, L. Guo, ACS Energy Lett. 5(2020) 844-866.
    [95]
    P. Chakthranont, T.R. Hellstern, J.M. McEnaney, T.F. Jaramillo, Adv. Energy Mater. 7(2017) 1701515.
    [96]
    T.R. Hellstern, A.C. Nielander, P. Chakthranont, L.A. King, J.J. Willis, S. Xu, C. MacIsaac, C. Hahn, S.F. Bent, F.B. Prinz, T.F. Jaramillo, ACS Appl. Nano Mater. 2(2019) 6-11.
    [97]
    S. Oh, S. Jung, Y.H. Lee, J.T. Song, T.H. Kim, D.K. Nandi, S.H. Kim, J. Oh, ACS Catal. 8(2018) 9755-9764.
    [98]
    J.L. Young, M.A. Steiner, H. Döscher, R.M. France, J.A. Turner, Todd G. Deutsch, Nat. Energy 2(2017) 17028.
    [99]
    Gurudayal D. Sabba, M.H. Kumar, L.H. Wong, J. Barber, M. Gratzel, N. Mathews, Nano Lett. 15(2015) 3833-3839.
    [100]
    F.F. Abdi, L. Han, A.H. Smets, M. Zeman, B. Dam, R. Krol, Nat. Commun. 4(2013) 2195.
    [101]
    P. Dias, M. Schreier, S.D. Tilley, J. Luo, J. Azevedo, L. Andrade, D. Bi, A. Hagfeldt, A. Mendes, M. Grätzel, M.T. Mayer, Adv. Energy Mater. 5(2015) 1501537.
    [102]
    M.S. Prévot, K. Sivula, J. Phys. Chem. C 117(2013) 17879-17893.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (98) PDF downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return