Citation: | Shuai Shao, Ying Yang, Shangwei Guo, Shijie Hao, Feng Yang, Suoying Zhang, Yang Ren, Yangchuan Ke. Highly active and stable Co nanoparticles embedded in nitrogen-doped mesoporous carbon nanofibers for aqueous-phase levulinic acid hydrogenation. Green Energy&Environment, 2021, 6(4): 567-577. doi: 10.1016/j.gee.2020.11.005 |
Developing a highly active and durable non-noble metal catalyst for aqueous-phase levulinic acid (LA) hydrogenation to γ-valerolactone (GVL) is an appealing yet challenging task. Herein, we report well-dispersed Co nanoparticles (NPs) embedded in nitrogen-doped mesoporous carbon nanofibers as an efficient catalyst for aqueous-phase LA hydrogenation to GVL. The Co zeolitic imidazolate framework (ZIF-67) nanocrystals were anchored on the sodium dodecyl sulfate modified wipe fiber (WF-S), yielding one-dimensional (1-D) structured composite (ZIF-67/WF-S). Subsequently, Co NPs were uniformly embedded in nitrogen-doped mesoporous carbon nanofibers (CoRNC/SMCNF) through a pyrolysis-reduction strategy using ZIF-67/WF-S as the precursor. Benefiting from introducing modified wipe fiber WF-S to enhance the dispersion of Co NPs, and Co0 with Co-Nx dual active sites, the resulting CoRNC/SMCNF catalyst shows brilliant catalytic activity (206 h-1 turnover frequency). Additionally, the strong metal–support interactions greatly inhibited the Co NPs from aggregation and leaching from the mesoporous carbon nanofibers, and thus increasing the reusability of the CoRNC/SMCNF catalyst (reusable nine times without notable activity loss).
[1] |
D.M. Alonso, S.G. Wettstein, J.A. Dumesic, Chem. Soc. Rev. 41(2012) 8075-8098.
|
[2] |
G.W. Huber, J.N. Chheda, C.J. Barrett, J.A. Dumesic, Science 308(2005) 1446-1450.
|
[3] |
H.B. Zhao, J.E. Holladay, H. Brown, Z.C. Zhang, Science 316(2007) 1597-1600.
|
[4] |
J.C. Serrano-Ruiz, R. Luque, A. Sepúlveda-Escribano, Chem. Soc. Rev. 40(2011) 5266-5281.
|
[5] |
J.S. Luterbacher, J.M. Rand, D.M. Alonso, J. Han, J.T. Youngquist, C.T. Maravelias, B.F. Pfleger, J.A. Dumesic, Science 343(2014) 277-280.
|
[6] |
Y. Yang, G. Gao, X. Zhang, F. Li, ACS Catal. 4(2014) 1419-1425.
|
[7] |
O.A. Abdelrahman, A. Heyden, J.Q. Bond, ACS Catal. 4(2014) 1171-1181.
|
[8] |
S. Ishikawa, D.R. Jones, S. Iqbal, C. Reece, D.J. Morgan, D.J. Willock, P.J. Miedziak, J.K. Bartley, J.K. Edwards, T. Murayama, W. Ueda, G.J. Hutchings, Green Chem. 19(2017) 225-236.
|
[9] |
A.M. Hengne, C.V. Rode, Green Chem. 14(2012) 1064-1072.
|
[10] |
K. Jiang, D. Sheng, Z.H. Zhang, J. Fu, Z.Y. Hou, X.Y. Liu, Catal. Today 274(2016) 55-59.
|
[11] |
S. Gundekari, K. Srinivasan, Catal. Commun. 102(2017) 40-43.
|
[12] |
W. Gong, Y. Lin, C. Chen, M. Al-Mamun, H. Lu, G. Wang, H. Zhang, H. Zhao, Adv. Mater. 31(2019) 1808341-1818348.
|
[13] |
H. Zhou, J. Song, H. Fan, B. Zhang, Y. Yang, J. Hu, Q. Zhu, B. Han, Green Chem. 16(2014) 3870-3875.
|
[14] |
H. Zhao, J. Hao, Y. Ban, Y. Sha, H. Zhou, Q. Liu, Catal. Today 319(2019) 145-154.
|
[15] |
X.D. Long, P. Sun, Z.L. Li, R. Lang, C.G. Xia, F.W. Li, Chin. J. Catal. 36(2015) 1512-1518.
|
[16] |
L. Liu, F. Gao, P. Concepción, A. Corma, J. Catal. 350(2017) 218-225.
|
[17] |
X. Wei, Z. Zhang, M. Zhou, A. Zhang, W.D. Wu, Z. Wu, Nanoscale 10(2018) 16839-16847.
|
[18] |
W. Gong, Q. Yuan, C. Chen, Y. Lv, Y. Lin, C. Liang, G. Wang, H. Zhang, H. Zhao, Adv. Mater. 31(2019) 1906051.
|
[19] |
L. Shang, H. Yu, X. Huang, T. Bian, R. Shi, Y. Zhao, G.I.N. Waterhouse, L.-Z. Wu, C.-H. Tung, T. Zhang, Adv. Mater. 28(2016) 1668-1674.
|
[20] |
J. Yang, F. Zhang, H. Lu, X. Hong, H. Jiang, Y. Wu, Y. Li, Angew. Chem. Int. Ed. 54(2015) 10889-10893.
|
[21] |
Y. Li, J. Fan, J. Zhang, J. Yang, R. Yuan, J. Chang, M. Zheng, Q. Dong, ACS Nano 11(2017) 11417-11424.
|
[22] |
N.L. Torad, M. Hu, Y. Kamachi, K. Takai, M. Imura, M. Naito, Y. Yamauchi, Chem. Commun. 49(2013) 2521-2523.
|
[23] |
A.J. Amali, J.K. Sun, Q. Xu, Chem. Commun. 50(2014) 1519-1522.
|
[24] |
N.L. Torad, M. Hu, S. Ishihara, H. Sukegawa, A.A. Belik, M. Imura, K. Ariga, Y. Sakka, Y. Yamauchi, Small 10(2014) 2096-2107.
|
[25] |
J. Hu, H. Wang, Q. Gao, H. Guo, Carbon 48(2010) 3599-3606.
|
[26] |
W. Xia, C. Qu, Z. Liang, B. Zhao, S. Dai, B. Qiu, Y. Jiao, Q. Zhang, X. Huang, W. Guo, Nano Lett. 17(2017) 2788-2795.
|
[27] |
W. Zhang, Z.Y. Wu, H.L. Jiang, S.H. Yu, J. Am. Chem. Soc. 136(2014) 14385-14388.
|
[28] |
M. Wu, C. Li, R. Liu, Energy Technol. 7(2019) 1800790.
|
[29] |
Y.X. Zhao, Q.X. Lai, J.J. Zhu, J. Zhong, Z.M. Tang, Y. Luo, Y.Y. Liang, Small 14(2018) 1704207.
|
[30] |
W. Yang, J. Wang, Q. Yang, H. Pei, N. Hu, Y. Suo, Z. Li, D. Zhang, J. Wang, Chem. Eng. J. 339(2018) 230-239.
|
[31] |
T. Yokoi, H. Yoshitake, T. Yamada, Y. Kubota, T. Tatsumi, J. Mater. Chem. 16(2006) 1125-1135.
|
[32] |
A. Martínez, C. López, F. Márquez, I. Díaz, J. Catal. 220(2003) 486-499.
|
[33] |
D. Saliba, M. Ammar, M. Rammal, M. Al-Ghoul, M. Hmadeh, J. Am. Chem. Soc. 140(2018) 1812-1823.
|
[34] |
D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu, W. Chu, X. Han, Y. Du, Carbon 111(2017) 722-732.
|
[35] |
H.I. Lee, S.H. Joo, J.H. Kim, D.J. You, J.M. Kim, J.N. Park, H. Chang, C. Pak, J. Mater. Chem. 19(2009) 5934-5939.
|
[36] |
Q. Cheng, N. Zhao, S. Lyu, Y. Tian, F. Gao, L. Dong, Z. Jiang, J. Zhang, N. Tsubaki, X. Li, Appl. Catal. B Environ. 248(2019) 73-83.
|
[37] |
T. Palaniselvam, V. Kashyap, S.N. Bhange, J.B. Baek, S. Kurungot, Adv. Funct. Mater. 26(2016) 2150-2162.
|
[38] |
Q. Bai, F.C. Shen, S.L. Li, J. Liu, L. Dong, Z. Wang, Y. Lan, Small Methods 2(2018) 1800049.
|
[39] |
B. You, N. Jiang, M. Sheng, S. Gul, J. Yano, Y. Sun, Chem. Mater. 27(2015) 7636-7642.
|
[40] |
Q. Niu, B. Chen, J. Guo, J. Nie, X. Guo, G. Ma, Nano-Micro Lett. 11(2019) 8.
|
[41] |
S.H. Ahn, M.J. Klein, A. Manthiram, Adv. Energy Mater. 7(2017) 1601979.
|
[42] |
M. Zhang, C. Wang, R. Luo, W. Zhang, S. Chen, X. Yan, J. Qi, X. Sun, L. Wang, J. Li, J. Mater. Chem. 7(2019) 5173-5178.
|
[43] |
F. Sun, J.H. Gao, X.X. Pi, L.J. Wang, Y.Q. Yang, Z.B. Qu, S.H. Wu, J. Power Sources 337(2017) 189-196.
|
[44] |
C. Li, Y. Du, D. Wang, S. Yin, W. Tu, Z. Chen, M. Kraft, G. Chen, R. Xu, Adv. Funct. Mater. 27(2017) 1604328.
|
[45] |
X. Sun, A.I. Olivos-Suarez, D. Osadchii, M.J.V. Romero, F. Kapteijn, J. Gascon, J. Catal. 357(2018) 20-28.
|
[46] |
P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, Z. Deng, G. Zhou, S. Wei, Y. Li, Angew. Chem. Int. Ed. 55(2016) 10800-10805.
|
[47] |
X.G. Li, W.T. Bi, L. Zhang, S. Tao, W.S. Chu, Q. Zhang, Y. Luo, C.Z. Wu, Y. Xie, Adv. Mater. 28(2016) 2427-2431.
|
[48] |
K.W. Golub, T.P. Sulmonetti, L.A. Darunte, M.S. Shealy, C.W. Jones, ACS Appl. Nano Mater. 2(2019) 6040-6056.
|
[49] |
L. Wang, L. Wang, J. Zhang, X. Liu, H. Wang, W. Zhang, Q. Yang, J. Ma, X. Dong, S.J. Yoo, J.G. Kim, X. Meng, F.S. Xiao, Angew. Chem. Int. Ed. 57(2018) 6104-6108.
|
[50] |
H.Z. Jiang, X.L. Yu, R.F. Nie, X.H. Lu, D. Zhou, Q.H. Xia, Appl. Catal., A 520(2016) 73-81.
|
[51] |
R. Nie, H. Jiang, X. Lu, D. Zhou, Q. Xia, Catal. Sci. Technol. 6(2016) 1913-1920.
|
[52] |
Z. Wei, J. Lou, C. Su, D. Guo, Y. Liu, S. Deng, ChemSusChem 10(2017) 1720-1732.
|
[53] |
S. Song, S. Yao, J. Cao, L. Di, G. Wu, N. Guan, L. Li, Appl. Catal. B Environ. 217(2017) 115-124.
|
[54] |
J. Tan, J. Cui, X. Cui, T. Deng, X. Li, Y. Zhu, Y. Li, ACS Catal. 5(2015) 7379-7384.
|
[55] |
W. Luo, U. Deka, A.M. Beale, E.R.H. van Eck, P.C.A. Bruijnincx, B.M. Weckhuysen, J. Catal. 301(2013) 175-186.
|