Volume 7 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Yu Wang, Kun Zhou. Two-dimensional metallic tantalum ditelluride with an intrinsic basal-plane activity for oxygen reduction: A microkinetic modeling study. Green Energy&Environment, 2022, 7(3): 525-532. doi: 10.1016/j.gee.2020.11.003
Citation: Yu Wang, Kun Zhou. Two-dimensional metallic tantalum ditelluride with an intrinsic basal-plane activity for oxygen reduction: A microkinetic modeling study. Green Energy&Environment, 2022, 7(3): 525-532. doi: 10.1016/j.gee.2020.11.003

Two-dimensional metallic tantalum ditelluride with an intrinsic basal-plane activity for oxygen reduction: A microkinetic modeling study

doi: 10.1016/j.gee.2020.11.003
  • Two-dimensional (2D) materials have exhibited great potential for replacing costly Pt for oxygen reduction reaction (ORR) because of their distinctive structural features and high pre-site activity. However, their performance is generally hindered by the limited density of active sites (e.g., at the layer edges). Although they feature a high exposure of surface sites, these sites are typically inert for ORR. Herein, through density functional theory calculations, we propose a promising ORR catalyst candidate, a 2D TaTe2 nanosheet, which has an intrinsic high basal-plane activity. Both of the thermodynamic and kinetic processes are explored, which demonstrates that the basal-plane Te sites of the TaTe2 nanosheet have great potential for facilitating ORR. Specifically, we construct a microkinetic model of ORR proceeding on TaTe2, which unveils its dynamic intermediate coverage under different electrode potentials and identifies the dominating associative pathway. The theoretical half-wave potential of TaTe2 is predicted to be 0.87 V, which exceeds those of the well-established Pt (111) and Fe-N-C single-atom catalysts computed at the same level. This study not only presents the first 2D, non-Pt ORR catalyst candidate with an intrinsic basal-plane activity but also offers a rational methodology for unveiling the mechanism/activity of ORR and other electrochemical reactions.

     

  • loading
  • [1]
    M.K. Debe, Nature 486 (2012) 43-51.
    [2]
    H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Appl. Catal. B Environ. 56 (2005) 9-35.
    [3]
    B. Liu, K. Zhou, Prog. Mater. Sci. 100 (2019) 99-169.
    [4]
    H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, Y. Zheng, S.Z. Qiao, Chem. Rev. 118 (2018) 6337-6408.
    [5]
    F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Science 347 (2015) 1246501.
    [6]
    L. Dai, Acc. Chem. Res. 46 (2013) 31-42.
    [7]
    M. Li, L. Zhang, Q. Xu, J. Niu, Z. Xia, J. Catal. 314 (2014) 66-72.
    [8]
    J. Gu, S. Magagula, J. Zhao, Z. Chen, Small Methods 3 (2019) 1800550.
    [9]
    H. Fei, J. Dong, D. Chen, T. Hu, X. Duan, I. Shakir, Y. Huang, X. Duan, Chem. Soc. Rev. 48 (2019) 5207-5241.
    [10]
    H.T. Chung, D.A. Cullen, D. Higgins, B.T. Sneed, E.F. Holby, K.L. More, P. Zelenay, Science 357 (2017) 479-484.
    [11]
    Z. Yang, Y. Wang, M. Zhu, Z. Li, W. Chen, W. Wei, T. Yuan, Y. Qu, Q. Xu, C. Zhao, X. Wang, P. Li, Y. Li, Y. Wu, Y. Li, ACS Catal. 9 (2019) 2158-2163.
    [12]
    Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen, Z. Li, R. Shen, L. Zheng, Z. Zhuang, D. Wang, Y. Li, Angew. Chem. Int. Ed. 56 (2017) 6937-6941.
    [13]
    J. Wang, Z. Li, Y. Wu, Y. Li, Adv. Mater. 30 (2018) 1801649.
    [14]
    J. Zhu, S. Mu, Adv. Funct. Mater. 30 (2020) 2001097.
    [15]
    D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, Nano Lett. 13 (2013) 6222-6227.
    [16]
    Y. Liu, J. Wu, K.P. Hackenberg, J. Zhang, Y. M. Wang, Y. Yang, K. Keyshar, J. Gu, T. Ogitsu, R. Vajtai, J. Lou, P.M. Ajayan, B.C. Wood, B.I. Yakobson, Nat. Energy 2 (2017) 17127.
    [17]
    J. Jiang, W. Ding, W. Li, Z. Wei, Chem 6 (2020) 431-447.
    [18]
    Y. Wang, Y. Li, T. Heine, J. Am. Chem. Soc. 140 (2018) 12732-12735.
    [19]
    X. Lv, W. Wei, H. Wang, B. Huang, Y. Dai, Appl. Catal. B:Environ. 255 (2019) 117743.
    [20]
    C. Fan, Z. Huang, X. Hu, Z. Shi, T. Shen, Y. Tang, X. Wang, L. Xu, Green Energy Environ. 3 (2018) 310-317.
    [21]
    A. Kulkarni, S. Siahrostami, A. Patel, J.K. Noerskov, Chem. Rev. 118 (2018) 2302-2312.
    [22]
    S. Kattel, G. Wang, J. Phys. Chem. Lett. 5 (2014) 452-456.
    [23]
    W. Liang, J. Chen, Y. Liu, S. Chen, ACS Catal. 4 (2014) 4170-4177.
    [24]
    G. Luo, Y. Wang, Y. Li, Sci. Bull. 62 (2017) 1337-1343.
    [25]
    H. Xu, D. Cheng, D. Cao, X. Zeng, Nat. Catal. 1 (2018) 339-348.
    [26]
    X. Zhu, J. Yan, M. Gu, T. Liu, Y. Dai, Y. Gu, Y. Li, J. Phys. Chem. Lett. 10 (2019) 7760-7766.
    [27]
    J.K. Noerskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B 108 (2004) 17886-17892.
    [28]
    Y. Wang, Y.J. Tang, K. Zhou, J. Am. Chem. Soc. 141 (2019) 14115-14119.
    [29]
    X. Yang, D. Xia, Y. Kang, H. Du, F. Kang, L. Gan, J. Li, Adv. Sci. 7 (2020) 2000176.
    [30]
    G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558-561.
    [31]
    P.E. Blochl, Phys. Rev. B 50 (1994) 17953-17979.
    [32]
    G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758-1775.
    [33]
    J.P. Perdew, L. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
    [34]
    X. Sui, T. Hu, J. Wang, B.L. Gu, W. Duan, M.S. Miao, Phys. Rev. B 96 (2017) 041410.
    [35]
    S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57 (1998) 1505-1509.
    [36]
    S. Grimme, J. Antony, S. Ehrlich, S. Krieg, J. Chem. Phys. 132 (2010) 154104.
    [37]
    J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118 (2003) 8207-8215.
    [38]
    G. Henkelman, B.P. Uberuaga, H. Jonsson, J. Chem. Phys. 113 (2000) 9901-9904.
    [39]
    A. Togo, I. Tanaka, Scr. Mater. 108 (2015) 1-5.
    [40]
    G.J. Martyna, M.L. Klein, M. Tuckerman, J. Chem. Phys. 97 (1992) 2635-2643.
    [41]
    X. Chia, A. Ambrosi, P. Lazar, Z. Sofer, M. Pumera, J. Mater. Chem. A 4 (2016) 14241-14253.
    [42]
    K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T.A. Arias, R.G. Hennig, J. Chem. Phys. 140 (2014) 084106.
    [43]
    H.A. Hansen, V. Viswanathan, J.K. Noerskov, J. Phys. Chem. C 118 (2014) 6706-6718.
    [44]
    B.E. Brown, Acta Cryst. 20 (1966) 264-267.
    [45]
    L.H. Brixner, J. Inorg. Nucl. Chem. 24 (1962) 257-263.
    [46]
    J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen, J. Xia, H. Wang, Y. Xie, H. Yu, J. Lei, D. Wu, F. Liu, Q. Fu, Q. Zeng, C.H. Hsu, C. Yang, L. Lu, T. Yu, Z. Shen, H. Lin, B.I. Yakobson, Q. Liu, K. Suenaga, G. Liu, Z. Liu, Nature 556 (2018) 355-359.
    [47]
    J. Li, B. Zhao, P. Chen, R. Wu, B. Li, Q. Xia, G. Guo, J. Luo, K. Zang, Z. Zhang, H. Ma, G. Sun, X. Duan, X. Duan, Adv. Mater. 30 (2018) 1801043.
    [48]
    T. Heine, Acc. Chem. Res. 48 (2015) 65-72.
    [49]
    T. Sorgel, J. Nuss, U. Wedig, R.K. Kremer, M. Jansen, Mater. Res. Bull. 41 (2006) 987.
    [50]
    J. Feng, A. Tan, S. Wagner, J. Liu, Z. Mao, X. Ke, P. Zhang, Appl. Phys. Lett. 109 (2016) 021901.
    [51]
    T. Björkman, A. Gulans, A. V. Krasheninnikov, R. M. Nieminen, Phys. Rev. Lett. 108 (2012) 235502.
    [52]
    Q. Man, Y. Chen, Y. Wang, Y. Li, J. Mater. Chem. A 6 (2018) 4119-4125.
    [53]
    P. Miro, M. Audiffred, T. Heine, Chem. Soc. Rev. 43 (2014) 6537-6554.
    [54]
    X. Zhao, Y. Wang, Y. Da, X. Wang, T. Wang, M. Xu, X. He, W. Zhou, Y. Li, J.N. Coleman, Y. Li, Natl. Sci. Rev. 7 (2020) 1360-1366.
    [55]
    V. Tripkovic, E. Skulason, S. Siahrostami, J.K. Noerskov, J. Rossmeisl, Electrochim. Acta 55 (2010) 7975-7981.
    [56]
    U.I. Kramm, I. Herrmann-Geppert, J. Behrends, K. Lips, S. Fiechter, P. Bogdanoff, J. Am. Chem. Soc. 138 (2016) 635-640.
    [57]
    Y. Wang, X. Zhu, Y. Li, J. Phys. Chem. Lett. 10 (2019) 4663-4667
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (308) PDF downloads(24) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return